Если прямая перпендикулярно плоскости, то ее направляющий вектор является нормальным вектором плоскости.
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C). Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S(). По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
3)Готовое уравнение прямой:
uuks2012
10.03.2021
Пусть грузоподъемность грузовиков: ф, m и а, при этом ф < m < а. Из условия, общий объем (масса) груза равняется 10ф. Из этого получаем, что 10ф / (m+а) < 5. Условие о том, что недогрузка запрещена, можно трактовать как то, что 10ф / (m+а) — это целое число. Однако, даже из этого мы получим всего лишь набор уравнений: 5ф = 2(m+а) 10ф = m+а 5ф = m+а 10ф = m+а все данные уравнения имеют решения в целых числах ответ (от 1 до 4 перевозок) Еще можно решить методом подбора,но там очень много нужно подбирать
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C).
Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S().
По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
3)Готовое уравнение прямой: