54 км/сағ жылдамдықпен жүріп келе жатқан пойыздың терезесінен қарап тұрған жолаушының тұсынан 36 км/сағ жылдамдықпен қарсы келе жатқан ұзындығы 150 м пойыз қанша уақытта өтеді?
Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
54 км/сағ жылдамдықпен жүріп келе жатқан пойыздың терезесінен қарап тұрған жолаушының тұсынан 36 км/сағ жылдамдықпен қарсы келе жатқан ұзындығы 150 м пойыз қанша уақытта өтеді?
1 Центр(2;-4) , радиус равен 2
2 центр имеет координаты (-1+3)/2=1;у=(3+3)/2=3, т.е. центр (1;3), а радиус равен √(16+0²)/2=4/2=2
3. с осью оу х=0, у=3, это точка (0;3), с осью ох у=0, х=12, это точка (12;0)
подставим у =х-2 в первое уравнение х+4у-12=0 . получим
х+4х-8-12=0, откуда 5х=20, х=4, тогда у=4-2=2.
итак. получили точку пересечения (4;2)
4. подставим у=-х+4 в первое уравнение окружности. получим
(х-2)² + (-х+4-4)² =2 ⇒х²-4х+4+х²=2; 2х²-4х+2=0; х²-2х+1=0; ⇒(х-1)²=0, х=1, у=4-1=3. искомая точка (3; 1)