Для удобства обозначим скорость автобуса х, а скорость экспресса у. автобус до места встречи двигался 6+24=30 мин. = 1/2 часа экспресс до места встречи двигался 24 мин. = 6/15 часа - по условию. оба они проехали одинаковое расстояние, поэтому можно записать 1) (1/2)*х=(6/15)*у далее запишем формулу при уменьшении скорости автобуса в 2 раза. за 6 мин. = 1/10 часа автобус проедет (х/2)*(1/10) = х/20 км за время t до встречи с экспрессом автобус проедет (x/2)*t=xt/2 км экспресс за время t проедет yt км, можно записать: 2) (x/20)+(xt/2)=yt из этой формулы выразим t: (x+10xt)/20=yt x+10xt=20yt x=20yt-10xt x=t(20y-10x) 3) t=x/(20y-10x) теперь из формулы 1) выразим х: x=12y/15 и подставим в формулу 3) часа или 4 минуты ответ: если бы скорость автобуса уменьшилась вдвое экспресс догнал бы его через 4 минуты.
avdeevana
05.09.2021
Решение нестандартное немного, надеюсь, что поймешь. краткий экскурс: возьмем, например, уравнение x^2-11x+30=0. у него два корня: +5 и +6 и это уравнение можно записать в виде (x-5)(x-6)=0. убедись сам/а, перемножив все слагаемые и к общему виду. и так, по один из корней равен 4. тогда: (x-4)(x-n)=0 x-4 я надеюсь понял/а что такое, а вот n - это второй корень уравнения. смотрим еще раз наше уравнение исходное. x^2+px+c=0 c=36 на что надо домножить -4 чтобы получить 36? -4x=36; x=36/-4=9 подставляем n=9 (x-4)(x-9)=0 перемножим слагаемые x^2-9x-4x+36=0; x^2-13x+36=0 p=-13. один по крайней мере нашел. надеюсь, что доступно объяснил. : )
f(x)=-2x+3
f(x)=0
-2x+3=0
-2x=-3(2x=3)
x=3/2
x=3