printdecor
?>

4(х-у)-7у=6, 5 с уравнением

Алгебра

Ответы

Nefedova1432

4х-4у-7у=6.5

4х-11у=6.5

4х=6.5+11у

х=1.625+11/4у

lolydragon

4(х-у)-7у=6.5

4х-4у-7у=6.5

4х-6.5=11у

у=(4х-6.5)/11

здесь у уравнения бесчисленное множество решений. Например. если

х=0, тоу=-65/110=-13/22, решение (0; -13/22) и т.д.

Головин662
Дана функция у = (-1/3)x^3+x^2.
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
 f(-x) = (-1/3)x³ + x²  = (1/3)x³ + x² 
- Нет
 -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² 
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(-1/3)x³+ x² = 0.
-x³ + 3x² = 0.
-x²(x-3) = 0.
Имеем 2 корня: х = 0 и х = 3.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в y = (-1/3)x^3 +x^2.
y = (-1/3)0³+0² = 0. Точка: (0, 0) 
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = -x²+2x = -x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.
5-определить промежутки монотонности 
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х =                -0.5    0    0.5      1.5     2     2.5
y'=-x^2+2x   -1.25    0   0.75    0.75    0   -1.25
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Возрастает на промежутке
[0, 2]
Убывает на промежутках
(-oo, 0] U [2, oo)
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 0,
Максимум функции в точке: х = 2.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = (-1/3)*2³+2² = -8/3 + 4  = 4/3,
х = 0, у = 0.
8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)= -2х + 2 =-2(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 1]
Выпуклая на промежутках
[1, oo)

Иследуйте функцию и постройте график: f (x)=-1/3x^3+x^2
macmakka
Сразу поменяю а на х. Мне так просто привычней.
Чтобы значение выражения 
было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем. 
Сразу заметим, что х не равен -2
Для этого можно было бы попробывать решить уравнение 
Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения. 
Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).

Нам остается последний вариант приравнять х=0, тогда мы получаем 

ответ х=0 единственный целое значение, при котором выражение тоже целое число!

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

4(х-у)-7у=6, 5 с уравнением
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ivanova55878
etv771370
Aleksei368
Овсянкина407
atenza3736
Ioanova Korneeva1093
nevzorova
Кирилл-Морозова
Elenabolt77
Vladimirovna Yevtodeva
Nataliatkachenko1
dlydesertov1
Serdechnaya636
anastasiavilina
Agadzhanyan-Ekaterina