1. Упростить выражения нельзя, поэтому просто подставим
4
Теперь с другим знаком, на деле это будет вторая дробь, только у а противположный знак
во втором примере удобно представить икс и игрик в виде направильных дробей, тогда 1= -2=-
произведем вычисления 11*3/6=11/2
-11*2/4=11/2.
11/2-11/2=0
2. Выражение представленное в виде дроби имеет смысл тогда и только тогда, когда знаменатель не равен нулю, соответственно
А-3, т.к. если икс равен минус 2, то 2-2=0 а на 0 делить нельзя
Б-4, т.к. в знаменателе перменной нет
В -2, т.к. произведение двух выражений равно нулю, когда хотя бы 1 равен нулю, а значит чтобы произведение не было равно нулю, то ни одно из них не должно равнятся нулю, отсюда исключаем 2 и -2
annayarikova
16.07.2022
|x + 3| - |2 - x| ≥ 5x - 3
Приравняем выражения под модулями к нулю, чтобы найти граничные значения x 1) x + 3 = 0 x = -3 2) 2 - x = 0 x = 2
Рассмотрим три промежутка значений x: 1) x ∈ (-∞; -3] 2) x ∈ (-3; 2] 3) x ∈ (2; +∞)
Объяснение:
1. Упростить выражения нельзя, поэтому просто подставим
4
Теперь с другим знаком, на деле это будет вторая дробь, только у а противположный знак
во втором примере удобно представить икс и игрик в виде направильных дробей, тогда 1= -2=-
произведем вычисления 11*3/6=11/2
-11*2/4=11/2.
11/2-11/2=0
2. Выражение представленное в виде дроби имеет смысл тогда и только тогда, когда знаменатель не равен нулю, соответственно
А-3, т.к. если икс равен минус 2, то 2-2=0 а на 0 делить нельзя
Б-4, т.к. в знаменателе перменной нет
В -2, т.к. произведение двух выражений равно нулю, когда хотя бы 1 равен нулю, а значит чтобы произведение не было равно нулю, то ни одно из них не должно равнятся нулю, отсюда исключаем 2 и -2