Первая производная
f'(x) = 4·(x-5)^3·(x+2)^3+3·(x-5)^2·(x+2)^4
или
f'(x)=7·(x-5)^2·(x-2)·(x+2)^3
Находим нули функции. Для этого приравниваем производную к нулю
(x-5)^2·(x-2)·(x+2)^3 = 0
Откуда
x1 = 5
x2 = -2
x3 = 2
(-∞ ;-2),f'(x) > 0-функция возрастает
(-2; 2),f'(x) < 0-функция убывает
(2; 5),f'(x) > 0-функция возрастает
(5; +∞),f'(x) > 0-функция возрастает
В окрестности точки x = -2 производная функции меняет знак с (+) на (-). Следовательно, точка x = -2 - точка максимума. В окрестности точки x = 2 производная функции меняет знак с (-) на (+). Следовательно, точка x = 2 - точка минимума.
Поделитесь своими знаниями, ответьте на вопрос:
Разложите на множители: (1) 16х^8-225у^6 (2)0.01m^2-1.44 (3) Упростите выражение 31n-25m-n-15m .. (4) Представте в виде многочлена выражения:(7а^2+0, 1b)(7a^2-0.1b)