olyaartemenko
?>

Надо расписать пример, заранее спс

Алгебра

Ответы

Вадим-Рашад323

вот все расписано, только там сбоку иногда написано подробно, как вычислять, (ну это если ты не знаешь) удачи, хороших оценок


Надо расписать пример,заранее спс
Надо расписать пример,заранее спс
tooltechnic
Найти корень уравнения 4x^2+3x-10=0, если их несколько, то указать сумму. 

Сразу вернёмся к формуле, по которой собственно и находятся корни квадратного уравнения (уравнения вида ax^2+bx+c=0): 
x_{1,2}=\frac{-bб\sqrt{D}}{2a}, дискриминант же расписывается по-своему: \sqrt{D}=\sqrt{b^2-4ac}. Дискриминант как бы заслужил своё отдельное внимание, ведь именно при его вычислении люди нередко допускают ошибки. Теперь – решаем

4x^2+3x-10=0, отсюда: a=4;b=3;c=-10, значит
\sqrt{D}=\sqrt{b^2-4ac}=\sqrt{3^2-4*4*(-10)}=\sqrt{9+160}=\sqrt{169}=13
мы получили \sqrt{D}=13; это как в алгебраических выражений седьмого класса – ты складываешь буквы, подставляешь вместо них какие-то числа и считываешь ответ, так вот здесь тоже самое

возвращаемся к формуле корней квадратного уравнения: 
x_{1,2}=\frac{-bб\sqrt{D}}{2a}=\frac{-3б13}{2*4}\to\left[\begin{array}{ccc}x_1=\frac{-3+13}{8}=\frac{5}{4}\\x_2=\frac{-3-13}{8}=-2\end{array}\right
оба корни действительны и являются решением данного уравнения, а теперь моё мини-задание: \frac{5}{4}+(-2)=-0,75

ответ: сумма корней квадратного уравнения 4x^2+3x-10=0 равна -\frac{3}{4}
IPMelnikovR146

1. записываем пример.

2. раскрываем формулу разности квадратов (x^2-y^2) и закрываем формулу квадрата разности (x^2-2xy+y^2) и одновременно с этим проводим другие действия. при раскрытии формулы разности квадратов получается (x-y)(x+y). при закрытии формулы квадрата разности получается (x-y)^2. значит, это можно раскрыть как выражение (x-y), возведенное в квадрат, то есть, умножить это выражение на такое же. получается (x-y)(x-y). проводим остальные действия: выносим общие множители выражений за скобки и превращаем вторую дробь в обратную. в итоге получаются сократимые выражения, состоящие из множителей. (x+2y) сокращается в числителе первой дроби и в знаменателе второй. (x-y) сокращается в знаменателе первой дроби и в числителе второй. далее просто умножаем оставшиеся выражения на множители, которые выносили ранее. ответ:

\frac{3x - 3y}{5x - 5y} .

вывод. применение формул сокращенного умножения - их нужно закрывать или раскрывать в зависимости от того, что требуется в примере.


Как применять формулы в примерах? например при с корнями т.д? большая с этим проблема, формулы знаю

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Надо расписать пример, заранее спс
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fursov-da
ella-rudenko
a96849926288
molchanovaelena284
serkan777
M19026789436
Альберт Татьяна
aivanova
gorod7
Ohokio198336
asker45967
atvkaprolon
ustinov434
lmedintseva6
dpodstrel85