Valentina1520
?>

При каких a уравнение имеет единственное значение | x+2 | - | 2x-a | =4

Алгебра

Ответы

goldglobustour725

a=-12 и a=4

Объяснение:

Первый модуль обращается в ноль при x=-2, второй - при x=\frac{a}{2}.

Пусть сначала

\frac{a}{2} =-2\\a=-4

Тогда уравнение принимает вид |x+2|=-4 и, очевидно, не имеет решений.

Пусть теперь

\frac{a}{2} -2

a-4

Если x \in [\frac{a}{2} ;+\infty), то оба модуля раскрываются с плюсом и уравнение принимает вид:

x+2+a-2x=4\\x=a-2

Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если a удовлетворяет системе неравенств

\left \{ {{a-2\geq \frac{a}{2} } \atop {a-4}} \right.

Решение системы: a\geq 4

Если x \in [-2 ;\frac{a}{2}), то уравнение принимает вид

x+2+2x-a=4\\x=\frac{a+2}{3}

Полученный x будет корнем уравнения, если a удовлетворяет системе:

\left \{ {{-2\leq \frac{a+2}{3} -4}} \right.

Решение системы: a4

Пусть, наконец, x \in (-\infty ;-2). Тогда уравнение принимает вид

-2-x+2x-a=4\\x=a+6

Полученный x будет корнем уравнения, если a удовлетворяет системе:

\left \{ { a+6-4}} \right.

Эта система не имеет решений.

Теперь пусть \frac{a}{2}, то есть a.

Если x\in[-2; +\infty), то

x+2-2x+a=4\\x=a-2

Система:

\left \{ { a-2\geq -2} \atop {a

Нет решений.

Если x\in[\frac{a}{2} ; -2), то

-2-x-2x+a=4\\x=\frac{a-6}{3}

Система:

\left \{ {{\frac{a}{2} \leq \frac{a-6}{3}

Решение системы: a\leq -12

И наконец, если x \in (-\infty ;-\frac{a}{2} ), то

-x-2+2x-a=4\\x=a+6

Система:

\left \{ {{a+6

Решение: a

Из вышесказанного очевидно, что

При a\in(-\infty; -12) - два решения

При a=-12 - одно решение

При a\in(-12; -4) - нет решений

При a\in[-4; 4) - нет решений

При a=4 - одно решение

При a\in(4; +\infty) - два решения

Таким образом, уравнение имеет одно решение при a=-12 и a=4

madina27821667

Объяснение:

Координатную прямую очень легко построить, если Вы хорошо усвоили принцип изображения координатного луча, о котором мы говорили в предыдущем пункте. Сделаем это.

Пусть перед нами находится координатный луч OX. Придадим ему положительное направление, указав его стрелочкой.

Теперь проведем луч с началом в точке O, дополняющий луч OX до прямой.

На этом луче отметим штрихи, откладывая друг за другом единичные отрезки справа налево, начиная с точки O.

После того как над штрихами справа налево от точки O мы запишем числа -1, -2, -3, …, координатная прямая примет законченный вид.

На практике чаще используется координатная прямая, на которой отмечено лишь начало отсчета и единичный отрезок, то есть, координатная прямая одного из следующих видов.

Итак, координатная прямая – это прямая, на которой выбрано начало отсчета, указан единичный отрезок и задано направление.

Взаимно однозначное соответствие между точками координатной прямой и действительными числами

Vasilevna_Shabanova1502

1.  1-й признак равенства( две стороны и угол между ними)

CВ=ВD ,∠CDA=∠DBA ,AB- общая сторона

ΔАСВ=АDB.

2.1-й признак равенства( две стороны и угол между ними)

МК- общая сторона, MN=PK, ∠MNK=∠MKP

ΔMNK=ΔPKM

3.1-й признак равенства( две стороны и угол между ними)

RO=OT,SO=PO, ∠ROS=∠TOP, как вертикальные углы

ΔROS=ΔTOP

4.2-й признак равенства( сторона и 2 прилежащих к ней угла)

5.2-й признак равенства( сторона и 2 прилежащих к ней угла)

6.3-й признак( по трём сторонам)

7.1-й признак равенства( две стороны и угол между ними)

8.3-й признак( по трём сторонам)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каких a уравнение имеет единственное значение | x+2 | - | 2x-a | =4
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Aleksandr72
zdv686857
Alekseevna
Konstantinovich alekseevna993
andrew409
shabunina17
brand
Кирилл-Морозова
fedorenkoroman
Agadzhanyan-Ekaterina
panasenko68
Васильевий
maksimforyou20
edelstar83
deshkina82