radatailless
?>

При каких значениях х производная функция у=(3-х)^4(2х+1)^3 принимает отрицательные значения​

Алгебра

Ответы

palchiknr

используем формулы нахождения производной сначала производная произведения (u*v) '= u ' v +v u '    далее производная степени, производная сложной функции и элементарное нахождение производной


При каких значениях х производная функция у=(3-х)^4(2х+1)^3 принимает отрицательные значения​
murin
A, b - катеты, c - гипотенуза
S=(1/2)ab=60;   c=13;   a^2+b=2=c^2 (Пифагор)

ab=120;  a^2+b^2=169

Добавим ко второму уравнению удвоенное первое:

a^2+2ab+b^2=409;
(a+b)^2=409;
a+b=√(409);
P=a+b+c=√(409)+13.

ответ "плохой", но что поделаешь.

Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2.
Отсюда Площадь равна (1/2)c·(c/2)=c^2/4.
В нашем случае c=13, S_(max)=169/4=42,25.
Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,

Примите мои соболезнования в связи с кончиной задачи
AndrukhovichKonovalov
A, b - катеты, c - гипотенуза
S=(1/2)ab=60;   c=13;   a^2+b=2=c^2 (Пифагор)

ab=120;  a^2+b^2=169

Добавим ко второму уравнению удвоенное первое:

a^2+2ab+b^2=409;
(a+b)^2=409;
a+b=√(409);
P=a+b+c=√(409)+13.

ответ "плохой", но что поделаешь.

Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2.
Отсюда Площадь равна (1/2)c·(c/2)=c^2/4.
В нашем случае c=13, S_(max)=169/4=42,25.
Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,

Примите мои соболезнования в связи с кончиной задачи

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каких значениях х производная функция у=(3-х)^4(2х+1)^3 принимает отрицательные значения​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Elen-Fler
Павловна897
tyrenumberone
Igorevich1559
DVOct33
abahtina582
kadrevproduction
aleksandramir90
nikziam
pravovoimeridian
tarhan1221
dzo-dzo
yana799707
Сергеевна-Иван1045
set907