В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 2√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
2√3 = √а
(2√3)² = (√а)²
4*3 = а
а=12;
b) Если х∈[0; 3], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√3=√3;
При х∈ [0; 3] у∈ [0; √3].
с) y∈ [2; 9]. Найдите значение аргумента.
2 = √х
(2)² = (√х)²
х=4;
9 = √х
(9)² = (√х)²
х=81;
При х∈ [4; 81] y∈ [2; 9].
d) Найдите при каких х выполняется неравенство у ≤ 3.
√х <= 3
(√х)² <= (3)²
х <= 9;
Неравенство у ≤ 3 выполняется при х <= 9.
Поделитесь своими знаниями, ответьте на вопрос:
Определите коэффициент и степень одного члена а) 7, 11 б) -7, 11 с) 7, 11 д) -7, 11 е)-7ху³ 11 я от
По условию касательная параллельна прямой y=-2x+6, значит коэффициент наклона прямой равен -2, а коэффициент наклона касательной есть значение производной в точке касания. Найдём точки, в которых производная функции y=-x²+4 равна -2. Сначала найдём производную
y'=(-x²+4)'=-2x
Приравняем производную к числу -2
-2x=-2
x₀=1
Найдём уравнение касательной к графику функции y=-x²+4 в точке x₀=1.
Найдем значение функции в точке x₀=1.
f(1)=-1²+4=3
f'(1)=-2 (по условию)
Подставим эти значения в уравнение касательной
y=3+(-2)(x-1)=3-2x+2=-2x+5