5. в вазе стоят 5 гвоздик и 6 нарциссов. какова вероятность того, что среди трёх случайным образом вынутых цветков окажется по крайней мере одна гвоздика?
Биссектриса внутреннего угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
Это относится ко всем треугольникам.
Из этого отношения следует отношение катетов:
ВС:АС=30:40=3:4
Пусть коэффициент отношения катетов будет х.
Тогда
ВС=3х
АС=4х
По т.Пифагора
АВ²=ВС²+АС²
70²=9х²+16х²=25х²
х²=196
х=14
АС=4*14=56 с
ВС=3*14=42 см
Опустим из точки К перпендикуляр КН на АС ( расстояние от точки до прямой -перпендикуляр)
КН║ВС, ∠ А общий
∆ АКН подобен ∆АВС
Из подобия
АВ:АК=ВС:КН
70:40=42:КН
КН=1680:70=24 см
Тем же из подобия КМВ и АВС найдем МК=24 (можно проверить).
Но треугольники ВМК и АНК не равны, как может показаться.
В них равные катеты лежат против разных углов.
АН=56-24=32 см
ВМ=42-24=18 см
Найдя КН, можно не находить отдельно расстояние КМ.
МКНС - квадрат, т.к. ∠С=90º по условию, ∠КАМ=∠КНС=90º по построению, а диагональ -биссектриса угла С
Подробнее - на - ответ:
Объяснение:
Anna572
01.03.2022
ответ:основание КМ равно 28 см.Объяснение:Рассмотрим треугольник MPK:1)Так как треугольник равнобедренный, следовательно углы при основании равны, а один из углов тупой, следовательно угол KPM равен 120 градусам. Отсюда мы можем найти углы PKM и PMK: (180-120):2 = 60:2=30 градусов.2) Рассмотрим треугольник KHM:Так как MH - высота треугольника KPM, следовательно треугольник KHM прямоугольный.В этом треугольнике известно: угол в 30 градусов и противолежащий катет, равный 14 см. Отсюда мы можем найти основание КМ: (Катет, лежащий против угла в 30 градусов равен половине гипотенузе, КМ - гипотенуза). И так, КМ равно: 2*НМ= 28 см.ответ: основание КМ равно 28 см.
Дано:∆ АВС - прямоугольный, угол С =90º
СК - бисскетриса.
ВК=30
АК=40
Решение задачи начнем с рисунка.
Биссектриса внутреннего угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
Это относится ко всем треугольникам.
Из этого отношения следует отношение катетов:
ВС:АС=30:40=3:4
Пусть коэффициент отношения катетов будет х.
Тогда
ВС=3х
АС=4х
По т.Пифагора
АВ²=ВС²+АС²
70²=9х²+16х²=25х²
х²=196
х=14
АС=4*14=56 с
ВС=3*14=42 см
Опустим из точки К перпендикуляр КН на АС ( расстояние от точки до прямой -перпендикуляр)
КН║ВС, ∠ А общий
∆ АКН подобен ∆АВС
Из подобия
АВ:АК=ВС:КН
70:40=42:КН
КН=1680:70=24 см
Тем же из подобия КМВ и АВС найдем МК=24 (можно проверить).
Но треугольники ВМК и АНК не равны, как может показаться.
В них равные катеты лежат против разных углов.
АН=56-24=32 см
ВМ=42-24=18 см
Найдя КН, можно не находить отдельно расстояние КМ.
МКНС - квадрат, т.к. ∠С=90º по условию, ∠КАМ=∠КНС=90º по построению, а диагональ -биссектриса угла С
Подробнее - на - ответ:
Объяснение: