NarekAlekseevich779
?>

Списать конспект за 10 класс параграф 23, стр 126​

Алгебра

Ответы

Нозадзе_Новиков392
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Списать конспект за 10 класс параграф 23, стр 126​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

igschuschkov6211
Azarova Anastasiya1707
anastasiavilina
chechina6646
maruska90
николаевич-Елена988
Щуплова Александр
yulyazhdan
Антон-Марина
Alsergus7811
chapaevval
Анастасия Елена
palchiknr
Nataliya Aleksandr1197
andrewa