BorgovichOA
?>

Найдите область определения функции y=(x-2)/(x+2)

Алгебра

Ответы

boykovandrew6663

ответ:

(-∞; -2)∪(-2; +∞)

объяснение:

знаменатель не равен 0,

х+2≠0

х≠-2

(-∞; -2)∪(-2; +∞)

Станислав Роман994

ответ: x=\frac{-1\pm i \sqrt{127} }{4}

объяснение: воспользуемся формулой для корня квадратного уравнения, чтобы найти решения.

\frac{-b \pm \sqrt{b^2-4(ac)} }{2a}

подставляем значения a=2, b=1 и c=16 в формулу корней квадратного уравнения и решаем относительно x.

\frac{-1 \pm \sqrt{1^2-4\times (2\times 16)} }{2 \times 2}

.

числитель.

x=\frac{-1 \pm i \sqrt{127} }{2\times2}

умножим 2*2.

x=\frac{-1 \pm i \sqrt{127} }{4}

выделяем множитель -1 из -1±i√127.

x=\frac{-11 \pm i \sqrt{127} }{4}

умножим -1 на 1.

x=\frac{1-1 \pm i\sqrt{127} }{4}

умножим -1±i√127 на 1.

x=\frac{-1\pm i\sqrt{127} }{4}

many858

ответ:

1) x_{1}=-3;  y_{1}=6;  x_{2}=2; y_{2}=1; \\2)x_{1}=2;  y_{1}=-1;  x_{2}=-3;  y_{2}=-6

объяснение:

1)\left \{ {{x^2-y=3} \atop {x+y=3}} \right.\left \{ {{x^2-y=3} \atop {x=3-y}} \right.\left \{ {{(3-y)^2-y=3} \atop {x=3-y}} \right.\left \{ {{9-6y+y^2-y=3} \atop {x=3-y}} \right.\left \{ {{y^2-7y+6=0} \atop {x=3-y}}  y^2-7y+6==b^2-4ac=49-24=25={1}=\frac{7+5}{2}={2}=\frac{7-5}{2}= \{ {{y_{1}=6} \atop {x_{1}=-3}} \right. \left \{ {{y_{2}=1} \atop {x_{2}=2}} \right.

2)\left \{ {{x^2+y=3} \atop {y-x+3=0}} \right. \left \{ {{x^2+y=3} \atop {x=3+y}} \right.\left \{ {{(3+y)^2+y=3} \atop {x=3+y}} \right.\left \{ {{9+6y+y^2+y=3} \atop {x=3+y}} \right.\left \{ {{y^2+7y+6=0} \atop {x=3+y}}  y^2+7y+6==b^2-4ac=49-24=25={1}=\frac{-7+5}{2}=-{2}=\frac{-7-5}{2}=- \{ {{y_{1}=-1} \atop {x_{1}=2}} \right. \left \{ {{y_{2}=-6} \atop {x_{2}=-3}} \right.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите область определения функции y=(x-2)/(x+2)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ekb676
msangelika1010
lshimina65
ukkavtodor6
olofinskayae
Ferrigen
avdoyan6621
vladexi
deputy810
igorSvetlana547
vshumilov
Verdievruslan
pbttehnology
Марюк-Мубариз
rpforma71189