Можно, например, использовать непрерывность функции f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c) и исследовать её поведение. а) при x→±∞: y→±∞ б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c f(x=a) = (a−b)(a−c) f(x=b) = (b−a)(b−c) f(x=c) = (c−a)(c−b) б1) пусть сначала все числа a, b, c различны: a< b< c f(x=a) > 0 f(x=b) < 0 f(x=c) > 0 значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c). б2) если хотя бы два числа из тройки (a,b,c) , то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.
решение приложено