а) например, 1236 и 1241.
б) наименьшее из таких двух чисел не может оканчиваться на 9 или иметь в разряде десятков 1, в противном случае в большем числе появился бы 0. значит, эти числа должны выглядеть так: a b c d и a b+1 c-1 d+1. из условия следует, что сумма цифр любого интересного числа четная, а суммы цифр этих двух чисел отличаются на (a + b + 1 + c - 1 + d + 1) - (a + b + c + d) = 1 и не могут быть одновременно чётными.
в) 9135 делится на 1, 3, 5 и 7; 1719 делится на 9. докажем, что не бывает интересных чисел, делящихся на 11.
признак делимости на 11: число делится на 11, если и только если суммы цифр на чётных и нечётных местах делятся на 11; число a b c d делится на 11, если (a + c) - (b + d) делится на 11.
поскольку сумма всех цифр четная, a сумма двух цифр не превосходит 18, то a + c = b + d.
если максимальная из цифр a или c, то она меньше, чем сумма b + d; если она b или d, то, соответственно, меньше a + c. поэтому максимальная из цифр не может оказаться равной сумме оставшихся цифр.
ответ. а) 1236 и 1241, б) нет, в) 11
Поделитесь своими знаниями, ответьте на вопрос:
Установите соответствие между графиками функций и формулами, которые их