1-sin2a \ sin a-cos a=sin^2a+cos^2a-2sina*cosa/ sin a-cos a=(sin a-cos a)^2/sin a-cos a=sin a-cos a.
Маринина_Елена
03.11.2022
Так как правая часть делится на 7, то и левая должна делиться на 7. для начала посмотрим, как остаток от деления на 7 квадрата числа зависит от остатка самого числа: 0 -> 0 1 -> 1 2 -> 4 3 -> 9 -> 2 4 -> 16 -> 2 5 -> 25 -> 4 6 -> 36 -> 1 так как нельзя выбрать два числа из получившихся так, чтобы их сумма делилась на 7, за исключением варианта 0 + 0, делаем вывод, что оба числа a и b должны делиться на 7. т.к. a и b делятся на 7, то a^2 + b^2 делится на 49, а следовательно и 7n делится на 49. разделим обе части на 49, получим (a/7)^2 + (b/7)^2 = n/7 n/7 < = 144 (так как 144*7 = 1008 < 1013; 145*7 = 1015 > 1013) дальше не вижу другого варианта (возможно, кто-нибудь предложит кроме как перебрать возможные значения n/7 < = 144, полученные суммой квадратов. важно избегать повторов. например, 9 + 16 = 0 + 25 0 + x^2: 0, 1 , 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 : 13 1 + x^2: 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122 : 11 4 + x^2: 8, 13, 22, 29, 40, 53, 68, 85, 104, 125 : 9 9 + x^2 : 18, 34, 45, 58, 73, 90, 109, 130 : 8 16 + x^2 : 32, 41, 52, 80, 97, 116, 137 : 7 25 + x^2 : 50, 61, 74, 89, 125 : 5 36 + x^2 : 72, 117, 136 : 3 49 + x^2 : 98, 113 : 2 64 + x^2 : 128 : 1 1 + 2 + 3 + 5 + 7 + 8 + 9 + 11 + 13 = 59 получается 59. если, конечно, нет никаких ошибок.
galereyaas1568
03.11.2022
Четвёртое число х третье число 0.2х второе число 0.4 * 0.2x = 0.08x первое число 0.8 * 0.08х = 0.064х 0.064x + 0.08x + 0.2x + x = 336 1.344x = 336 x = 250 первое число = 0.064 * 250 = 16 ( меньшее число ) второе число = 0.08 * 250 = 20 третье число = 0.2 * 250 = 50 четвертое число = 250
1-sin2a \ sin a-cos a=sin^2a+cos^2a-2sina*cosa/ sin a-cos a=(sin a-cos a)^2/sin a-cos a=sin a-cos a.