evageniy79
?>

При каких значения "а" уравнение (2а-3)*х=а+1 не имеет корня? а)0, 5 б)1, 5 в)0 г)-1, 5

Алгебра

Ответы

dentalfamily

решений нет, когда перед переменной стоит коэффициент 0, т.е.:

2а-3=0

2а=3

а=1,5

ответ: решений нет, если а=1,5

emartynova25
Б, потому что слева получается ноль, а справа 2,5.
iplizogub74

Задание 1

\displaystyle \left \{ {{y=4-x} \atop {x^{2} +3xy=18}} \right. \\ \\

Значение у из первого уравнения подставим во второе уравнение

\displaystyle x^{2} +3x(4-x)= 18\\ \\ x^{2} +12x-3x^{2} =18\\ \\ -2x^{2} +12x-18=0 | : (-2)\\ \\ x^{2} -6x+9=0\\ \\ D= 6^{2}- 4*9= 36-36=0

Если дискриминант равен нулю , то квадратное уравнение имеет только один действительный корень, также можно сказать , что квадратное уравнение имеет два действительных корня , которые равны между собой.

x_{}= \frac{6+0}{2}= 3

y_{}= 4-3=1

Задание 2

\displaystyle \left \{ {{x^{3} - y^{3} =26} \atop {x^{2}+xy+y^{2} =13}} \right.

первое уравнение в системе это разность кубов, разложи на множители:

\displaystyle x^{3} - y^{3} = 26 \\ \\ (x-y)(x^{2} +xy+y^{2})= 26

из второго уравнения подставим значение выражения х²+ху+у²

\displaystyle 13*(x-y)= 26 \\ \\ x-y= 26 : 13\\ \\ x-y= 2 \\ \\ x= 2+y

подставим значение х во второе уравнение системы :

(2+y)^{2} +y(2+y)+y^{2} = 13\\ \\ 4+4y+y^{2} +2y+y^{2} +y^{2}= 13\\ \\ 3y^{2} +6y+4-13=0\\ \\ 3y^{2}+6y-9=0 | : 3\\ \\ y^{2}+2y-3=0\\ \\ D= 2^{2}- 4*(-3)= 4+12=16\\ \\ \sqrt{D}= 4\\ \\ y_{1}= \frac{-2+4}{2}= 1\\ \\ y_{2}= \frac{-2-4}{2} = -3

тогда

x_{1}= 2+1=3\\ \\ x_{2}= 2+(-3)= 2-3=-1

Корни уравнения ( 3 ;1) и ( -1 ; -3)

ellyb106786

1) у=2х³+6х²=3

у'=6х²+12х=6х*(х+2)≥0

-20

+             -            +

на отрезка [-2;0] функция убывает на (-∞-2] и[0;+∞) функция возрастает

2) f(x)=2+5x³+x

f'(x)=10x²+1 производная на всей области определения положительна,значит функция возрастает на (-∞;+∞)

3) f(x)=3x+x²/4+x

f'(x)=3+x/2+1=4+x/2≥0, при х≥-8 функция возрастает, при х≤8 убывает.

если условие со скобками, тогда  f'(x)=((3x+x²)/(4+x))'=

(8x+2x²-3x-x²)/(4+x)²=(x²+5x)/(4+x)²≥0 решим методом интервалов.

___-5-40

+           -          -               + возрастает на (-∞;-5] и  [0;+∞] убывает функция на промежутках [-5;-4) и(-4;0]

2. Найдем производную от f(x)=4-2x+1/2x²-1/3x³; f'(x)=-2+x-x²≥0

-(x²-x+2); т.к. x²-x+2>0 при любом значении х, что следует из того, что дискриминант 1-8=-7- отрицателен, а первый коэффициент 1 положителен, значит, -(x²-x+2)<0 при любом значении х, т.е. на R функция убывает.  Доказано.

3. это уравнение параболы, абсцисса ее вершины равна -1.5/а, как известно, в зависимости от направления ветвей параболы будет зависеть возрастание и убывание функции, но на R она не возрастает, если же а=0, то f(x)=3x+5 -линейная функция, т.к. ее угловой коэффициент положителен. то функция возрастает на всей действительной оси.

ответ при а=0

:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При каких значения "а" уравнение (2а-3)*х=а+1 не имеет корня? а)0, 5 б)1, 5 в)0 г)-1, 5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ПогальниковАлёна589
Talikova164
adminkuncevo
Naumenkova-Ivanov
emilbadalov
Boykoyelena
Светлана308
hrim5736
dashkevich-76611
zabrodin
nsn-2012
kun1969
kogakinoa
danaya3005
nastyakrokhina87