Чтобы определить проходит ли график функции через данные точки, нужно координаты этих точек подставить в уравнение функции и проверить, выполняется ли равенство.
у=3х²-х-2
А (-1; 2)
2=3*(-1)²-(-1)-2
2=3+1-2
2=2
Равенство верно, следовательно график функции проходит через точку А.
В (2; 8)
8=3*2²-2-2
8=12-4
8=8
Равенство верно, следовательно график функции проходит через точку В.
С (0;3)
3=3*0²-0-2
3=-2
Равенство неверно, следовательно график функции не проходит через точку С.
D (1; 4)
4=3*1²-1-2
4=3-3
4=0
Равенство неверно, следовательно график функции не проходит через точку D.
ответ: график функции у=3х²-х-2 проходит через точку А (-1; 2) и В (2; 8).
Неопределенные системы линейных уравнений - метод решения, пример посвящено вопросу о том, как решать неопределенные системы. Если рассматривать систему, состоящую из n уравнений с n неизвестными, т.е. системы, матрица коэффициентов которых - квадрат, то необходимым условием её решения методом Крамера или матричным методом является неравенство нулю её определителя. Т.е. если определитель матрицы равен нулю, то решить такую систему указанными методами нельзя. Но это совсем не означает, что эта система уравнений не имеет решения вообще. В этом случае возможны два варианта. Первый из них, это когда решений действительно нет, т.е. система несовместна. Во втором случае система имеет множество решений (неопределенная система). Именно для решения таких систем и предназначен метод, который будет рассмотрен в данном видео уроке. Здесь также будет решен пример, в котором требуется решить неопределенную систему линейных уравнений. Процесс решения системы сопровождается подробным объяснением. Видео урок «Неопределенные системы линейных уравнений - метод решения, пример» вы можете смотреть онлайн в любое время абсолютно бесплатно. Успехов!
Объяснение:
лучший ответ
Поделитесь своими знаниями, ответьте на вопрос:
Прямолинейные движения двух материальных точек заданы уравнениями s1=2=+4t^2 и s2=3t^2+4t-1 найти скорость движения точек в те моомент, когда пройденные расстояние равны
1) найдем скорость, подставив время в производную.