x^2-64=(x-8)(x+8)
9a^2-16b^2=(3a-4b)(3a+4b)
Дан ромб ABCD: AC = 2√3 и BD = 2 — диагонали. Диагонали точкой пересечения делятся пополам и перпендикулярны друг другу, тогда:
OA = OC = AC/2 = 2√3/2 = √3;
OB = OD = BD/2 = 2/2 = 1;
∠AOB = ∠BOC = ∠COD = ∠DOA = 90°.
Таким образом, диагонали делят ромб ABCD на 4 равных прямоугольных треугольника.
1. Рассмотрим △AOB: ∠AOB = 90°, OA = √3 и OB = 1 — катеты.
Тангенсом острого угла прямоугольного треугольника является отношение длины катета, противолежащего данному углу, к длина катета, прилежащего к данному углу.
Найдем тангенс ∠OAB:
tg∠OAB = OB/OA = 1/√3 = 1/√3 * √3/√3 = (1 * √3)/(√3)² = √3/3.
∠OAB = 30°.
2. По теореме о сумме углов треугольника:
∠AOB + ∠OAB + ∠ABO = 180°;
90° + 30° + ∠ABO = 180°;
∠ABO = 180° - 120°;
∠ABO = 60°.
3. Диагонали ромба являются биссектрисами его углов, тогда:
∠A = 2 * ∠OAB = 2 * 30° = 60°;
∠B = 2 * ∠ABO = 2 * 60° = 120°.
Так как противолежащие углы ромба равны, то:
∠A = ∠C = 60°;
∠B = ∠D = 120°.
ответ: ∠A = 60°, ∠B = 120°, ∠C = 60°, ∠D = 120°.
Берем производную:
y' = 10x
10x = 0
x = 0
Смотрим как ведет себя производная в районе этой точки
При x < 0 y' < 0 => исходная функция убывает на интервале (-бесконечность;0)
При x > 0 y' > 0 => исходная функция возрастает на интервале (0;+бесконечность)
Это значит, что наименьшее значение на отрезке [-1;2] функция достигает при x = 0, то есть y(0)=15 - наименьшее значение
Свое наибольшее значение функция достигает на одном из концов отрезка:
y(-1) = 20
y(2)=35 - наибольшее значение функции на отрезке [-1;2\
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Разделите на множители x^2-64= 9a^2-16b^2=
x^2-64=(x+8)(x-8)
9a^2-16b^2=(3a+4b)(3a-4b)
######################