1)x=-4.5; y=-6; 2)x=-7; y=-4
Объяснение:
\left \{ {{xy-6x+7y-42=0} \atop {\frac{y+4}{x+y+11}=4}} \right.\\
Выразим y во втором уравнении.
{\frac{y+4}{x+y+11}=4}}
y+4=-4(x+y+11) -перенесли x+y+11 в числитель правой части
y+4=-4x-4y-44 -разложили множители
5y=-4x-48
y=-(0.8x+9.6) -разделили на 5
Перейдем к первому уравнению. В нем мы заменим все y на значение, которое у нас сейчас получилось (0.8x+9.6)
x(0.8x+9.6)-6x+7(0.8x+9.6)-42=0
Теперь сокращаем:
0.8x^{2}+9.6x-6x+5.6x+67.2-42=0
0.8x^{2}+9.2x+25.2=0 Квадр. уравнение
d=b^{2}-4ac=9.2^{2}-4*0.8*25.2=4
x_{1,2}={\frac{-b+\sqrt{d}}{2a}}={\frac{-9.2±sqrt{4}}{2*0.8}}={\frac{-9.2±2}{1.6}}
x_{1}={\frac{-9.2+2}{1.6}}={\frac{-7.2}{1.6}}=-4.5
x_{2}={\frac{-9.2-2}{1.6}}={\frac{-11.2}{1.6}}=-7
y=-(0.8x+9.6)
y_{1}=-(-0.8*4.5+9.6)=-6
y_{2}=-(-0.8*7+9.6)-4
ответы: 1)x=-4.5; y=-6; 2)x=-7; y=-4
Поделитесь своими знаниями, ответьте на вопрос:
Log0.25 x+ 3log0.5 x=0 над 0.25 стоит еще 2 решить
log(1/4) ^2x+3log(1/2)x=0
1/2 log(0.5)x+3log(0.5)x=0
log(0.5)vx+log(0.5)x^3=0
log(0.5)(vx*x^3)=0
vx*x^3=1
x^(7/2)=1
x=1