1) f'(x)=6x^2-6x-12;
f'(x)=0 < => 6x^2-6x-12=0 |: 6
x^2-x-2=0
x1=2 - не входит в промежуток в условии
x2=-1
f(-2)=-16-12+24+24=20
f(1)=2-3+12+24=35
f(-1)=-2-3+12+24=31;
ответ: minf(x)=f(-2)=20; maxf(x)=f(1)=35;
2) f'(x) = -sin2x*2+sinx*2
f'(x)=0 < => 2sinx-2sin2x=0 |: 2
sinx-sin2x=0; sinx-2sinxcosx=0; sinx(1-2cosx)=0; sinx=0 или cosx=-1/2;
x=pi * n, n принадлежит z или x=+-2pi/3+2pi*k, k принадлежит z;
f(-pi/3)=cos(-2pi/3) - 2cos(pi/3)=-1/2-2*1/2=-1/2-1=-3/2
f(pi)=cosx(2pi) - 2cos(pi)=1+2=3;
f(2pi/3)=cos(4pi/3)-2(2pi/3)=-1/2+2*1/2=-1/2+1=1/2;
ответ: minf(x)=f(-pi/3)=-3/2; maxf(x)=f(pi)=3;
Поделитесь своими знаниями, ответьте на вопрос:
Розкласти на множники многочлен: а)6х^2+ 12х б) а^2- 25 до завтра
вот такой ответ получился