уравнения прямых будут следующие
а) у=2х+2
б) у=2х-3
чтобы было понятнее. берем первоначальное уравнение и подставим в него значение у и х из нужных нам точек, но свободный член обозначим через с
у=2х+с
а) 2=2*0+с ⇒ с=2 ⇒ уравнение прямой будет иметь вид у=2х+2
б) -1=2*1+с ⇒ с=-3 ⇒ уравнение прямой будет иметь вид у=2х-3
а=18
Объяснение:
Чтобы найти коэффициент а гиперболы y = a/x, проходящей через точку (3; 6) (где 3 - координата х, 6 - координата у), нужно координаты этой точки подставить в формулу данной гиперболы и решить полученное уравнение:
6 = а / 3.
В этом уравнении а является неизвестным делимым. Чтобы его найти нужно делитель 3 умножить на частное 6:
а = 3 * 6 = 18.
Таким образом формула искомой гиперболы имеет вид: у = 18/х. Так как полученное а - положительное число, то ветви гиперболы располагаются в 1 и 3 четвертях координатной плоскости.
ответ: а = 18.
В решении.
Объяснение:
Найдите значение выражений:
1) (3-x)²-x(x-21) = при x= -2,84
= 9 - 6х + х² - х² +21х =
= 9 + 15х =
=9 + 15 * (-2,84) =
=9 - 42,6 = -33,6.
2) d⁷×(d³)⁻¹ = при d= -2
= d⁷ * 1/d³ =
= d⁷/d³ = d⁷⁻³ = d⁴ = (-2)⁴ = 16.
3) a + (2y-a²)/a = при a= -10 и y=19
общий знаменатель а:
= (а*а + 2у - а²)/а =
= (а² + 2у - а²)/а =
=2у/а = 2*19/(-10) = 38/(-10) = -3,8.
Поделитесь своими знаниями, ответьте на вопрос:
Решите напишите уравнение прямой, параллельной прямой игрик=2 икс + 1 и проходящей а)через точку(0; 2); б)через точку (1; -1)
чтобы решить это , нужно знать, что у таких прямых просто обязан быть одинаковый коэффициент пропорциональности (т.е. k)
а)
уравнение прямой: y=kx+b. 0 - это х, y - это 2. вставляем числа:
2=0+b;
b=2.
т.е, уравнение будет y=2x+2
б)аналогично:
-1=2+b;
b=-3
откуда получаем следующее уравнение: y=2x-3