/
Объяснение:
Пусть векторные поля являются потенциальными:
Тогда и результирующее поле
является потенциальным, а его потенциал равен сумме потенциалов полей :
Благодаря этому свойству проблема нахождения результирующего векторного поля E сводится к проблеме суммирования скалярных величин с последующим нахождением градиента полученной функции, что существенно сокращает трудоемкость вычислений.
Пусть скалярное поле является потенциалом векторного поля A. Тогда криволинейный интеграл по дуге BC не зависит от пути интегрирования, а определяется только положением начальной и конечной точек и
Действительно,
и, следовательно,
Потенциал в произвольной точке может быть вычислен по формуле
В качестве пути интегрирования проще всего выбрать ломаную, соединяющую точки B и M, участки которой расположены параллельно координатным осям.
Следствие. Если положения начальной и конечной точек интегрирования совпадают, то интеграл по замкнутому контуру L равен нулю:
Поделитесь своими знаниями, ответьте на вопрос:
Материальная точка движется по прямой со скоростью, проекция которой равна v=at+b м/c, где а=4м/с^2, b=-2 м/с, t - время в секундах. записать уравнение координаты, если в начальный момент времени тело имело координату 0. определить координату тела через 3 с после начала движения.