Легкая за 20 б! камень массой 100 г брошен с земли вертикально вверх с начальной скоростью v= 20 м/с. потенциальная энергия камня в момент броска равна 1) 20 дж; 2) 20000 дж; 3) 400 дж; 4) 0 дж.
По поводу ответа Сергея Гаврилова: силовые линии электростатического поля еще как пересекаются. Достаточно вспомнить картину силовых линий точечного заряда. Они все пересекаются в той точке, где находится заряд. И да, в этой точке направление электрического поля неоднозначно, как и сказал Сергей Гаврилов. А величина его равна нулю. И силовые линии пОля двух одинаковых точечных зарядов одного знака тоже пересекаются - точно в середине между зарядами. И поле в этой точке тоже равно нулю. Это вообще характерное заблуждение по поводу электростатических полей: считать, что их силовые линии не могут пересекаться. На самом деле - могут, но только в точках, где величина поля равна нулю.
ecocheminnov437
16.02.2020
*** [ограничивают 5000 символов, продолжение решения]
Аналогично напряжённости электрического поля – разумно ввести и понятие напряжённости магнитного воздействия, создаваемого одним зарядом. В случае электрического взаимодействия мы вводим понятие, которое оказывается независимым от пробного заряда, а именно – удельную силу, действующую на заряд, поскольку сама сила воздействия пропорциональная пробному заряду. Точно так же, нужно просто ввести характеристику, которая не будет включать в себя параметры пробного движущегося заряда, а именно силу, удельную к элементу тока. Элементом тока называют величину [vq]. Нечто аналогичное импульсу, но связанное с электричеством.
В этом случае окажется, что, напряжённость магнитного поля:
Ho = |F/[vq]| = k/c² [VQ]/R² .
В определениях индукции магнитного поля в среде и напряжённости магнитного поля в вакууме имеются известные неудобства, вдаваться в которые здесь неуместно, но, которые, по сути, не меняют природы указанных понятий.
В вакууме индукция B магнитного поля по определению равна напряжённости Ho магнитного поля:
B = Ho = k/c² [VQ]/R² = μo/ [VQ]/R² , (положить k/c² = μo/[4π] – оказывается удобным в большом классе задач)
Кроме прочего, в силу обстоятельств, при которых появляется необходимость введения магнитного поля, довольно замысловатым оказывается и геометрическая интерпретация напряжённости магнитного поля, вводимого, как псевдовектор c непараллельным силам магнитного взаимодействия направлением.
Но, как бы то ни было, поскольку мы понимаем, что подвижный заряд, оказавшийся на указанной в условии прямой будет либо притягиваться к каждому из протонов, либо отталкиваться от них, то поэтому для нахождения модуля суперпозиции магнитных полей – достаточно найти модуль суперпозиции магнитных сил, которые направлены просто к протонам или от них.
Итак:
Модули индукции магнитных полей каждого протона в точках на указанной прямой – будут выражаться, как:
Bp = k/c² [Ve] / [ (a/2)² + y² ] , где y – высота подъёма над плоскостью траекторий протонов.
Результирующая сила, действующая на пробный подвижный заряд, оказывающийся на заданной прямой – будет направлена перпендикулярно плоскости траекторий протонов, а значит, сила чисто магнитного взаимодействия будет складываться из двух вертикальных составляющих. В таком случае, магнитное поле системы протонов, окажется равно:
B = 2 Bp y / √[ (a/2)² + y² ] ;
B = 2k/c² [Ve] y / √( (a/2)² + y² )³ ;
Ясно, что посередине прямой, соединяющей протоны – магнитная индукция равна нулю. Так же, ясно, что и на бесконечности – она равна нулю. А где-то между нолём по высоте и бесконечностью – магнитная индукция принимает один максимум, что можно показать, просто взяв производную dB/dy и приравняв её к нулю:
При этом, магнитная индукция будет направлена перпендикулярно вертикальной оси и одновременно перпендикулярно направлению движения протонов. Т.е., короче говоря, магнитная индукция в искомой точке будет сориентирована вдоль прямой, соединяющей протоны. А направлена она будет, если смотреть в сторону улетающих от нас протонов – вправо в верхней над протонами точке и влево в нижней под протонами точке, т.е., короче говоря, магнитная индукция при таком взгляде будет находиться на контуре силовых линий магнитной индукции, с направлением обхода – по часовой стрелке.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Легкая за 20 б! камень массой 100 г брошен с земли вертикально вверх с начальной скоростью v= 20 м/с. потенциальная энергия камня в момент броска равна 1) 20 дж; 2) 20000 дж; 3) 400 дж; 4) 0 дж.