Ускорение свободного падения на высоте h над поверхностью Земли:
\displaystyle g=\frac{G\cdot M}{(R+h)^{2}}g=(R+h)2G⋅M
где G = 6,67·10⁻¹¹ H·м²/кг² - гравитационная постоянная
М = 6·10²⁴ кг - масса Земли
R = 6,4·10⁶ м - радиус Земли
h - высота тела над поверхностью Земли, м
Так как g₁ = g/16, то:
\begin{lgathered}\displaystyle h=\sqrt{\frac{16\cdot G\cdot M}{g}}-R=\sqrt{\frac{16\cdot6,67\cdot10^{-11}\cdot6\cdot10^{24}}{9,8}}-6,4\cdot10^{6}=\\\\\\{} \ \ =25,56\cdot10^{6}-6,4\cdot10^{6}=19,16\cdot10^{6} \ (m)\approx3R\end{lgathered}h=g16⋅G⋅M−R=9,816⋅6,67⋅10−11⋅6⋅1024−6,4⋅106= =25,56⋅106−6,4⋅106=19,16⋅106 (m)≈3R
ответ: ускорение свободного падения уменьшится в 16 раз
на высоте, равной трем радиусам Земли.
Объяснение:
думаю рішила правильно
Поделитесь своими знаниями, ответьте на вопрос:
Внагревательном элементе длиной 11 м и площадью поперечного сечения 0, 18 мм2 проходит ток 3.6 а при напряжении 220в определите удельное сопротивление материала, из которого сделан нагревательный элемент
/
Объяснение:
Пусть векторные поля являются потенциальными:
Тогда и результирующее поле
является потенциальным, а его потенциал равен сумме потенциалов полей :
Благодаря этому свойству проблема нахождения результирующего векторного поля E сводится к проблеме суммирования скалярных величин с последующим нахождением градиента полученной функции, что существенно сокращает трудоемкость вычислений.
Пусть скалярное поле является потенциалом векторного поля A. Тогда криволинейный интеграл по дуге BC не зависит от пути интегрирования, а определяется только положением начальной и конечной точек и
Действительно,
и, следовательно,
Потенциал в произвольной точке может быть вычислен по формуле
В качестве пути интегрирования проще всего выбрать ломаную, соединяющую точки B и M, участки которой расположены параллельно координатным осям.
Следствие. Если положения начальной и конечной точек интегрирования совпадают, то интеграл по замкнутому контуру L равен нулю: