билет №1.
1. механическое движение .траектория. путь. формулы пути, скорости, времени движения тела при равномерном движении
2. на применение плотности вещества.
билет №2.
1. агрегатные состояния вещества.
2. на расчет веса тела.
билет №3.
1. инерция. масса тела. измерение массы. взаимодействие тел.
2. на определение скорости тела при равномерном движении
билет №4.
1. плотность вещества.
2. на применение условия равновесия рычага.
билет №5.
1. сила. измерение силы. виды сил. сложение сил.
2 лабораторная работа « измерение объёма тела»
билет №6.
1. сила . виды деформации. закон гука
2. лабораторная работа» определение выталкивающей силы, действующей на погруженное в жидкость тело»
билет №7.
1. сила тяжести. вес тела. невесомость
2. лабораторная работа « определение плотности твёрдого тела»
билет №8.
1. архимедова сила. условие плавания тел.
2. на применение формулы механической энергии.
билет №9.
1. давление. единицы давления. способы увеличения и уменьшения давления
2. лабораторная работа « определение силы с динамометра» построение графика зависимости силы тяжести от массы тела.
билет №10.
1. сила трения. виды сил трения. трение в природе и технике.
2. на определение архимедовой силы.
билет №11.
1. механическая работа. мощность.
2.лабораторная работа «измерение массы тела на рычажных весах»
билет №12.
1. простые механизмы. правило равновесия рычага.
2.лабораторная работа «измерение размеров малых тел»
билеты №13.
1. «золотое правило механики». коэффициент полезного действия.
2. на определение давления в жидкости.
билет №14.
1. энергия. кинетическая и потенциальная энергия. закон сохранения энергии.
2. на применение формулы мощности.
билет №15.
1.поршневой жидкостный насос. гидравлический пресс
2. на применение формулы механической работы.
билет №16.
1.что изучает . тело , вещество, явление
2. на применение формулы давления твёрдых тел.
билет №17.
1молекулы. диффузия в газах, жидкостях, твердых телах.
2.лабораторная работа «выяснение условия равновесия рычага»
билет №18.
1.давление в жидкости. сообщающиеся сосуды.
2. на расчет средней скорости движения тела при неравномерном движении.
билет №19.
1. давление в газах. закон паскаля.
2. на применение формулы для расчета силы .
билет №20.
1. атмосферное давление. опыт торричелли. приборы для определения давления.
2. на сложение сил действующих на тело.
Поделитесь своими знаниями, ответьте на вопрос:
4, 6, 7, 8, 9, 3дайте ответы в тком порядке,
Существует 4 типа кристаллических решеток: ионные, молекулярные, атомные и металлические.
В узлах ионных кристаллических решеток находятся ионы, как можно понять из названия. Такой тип решетки характерен для солей, оксидов и некоторых гидроксидов. Например, самый яркий представитель - NaCl. Вещества подобного строения характеризуются высокой твердостью, тугоплавкостью и нелетучестью.
В молекулярных кристаллических решетках в узлах находятся молекулы. Такие решетки могут быть полярные и неполярные. Например, I2 или N2 - неполярные, а HCl или H2O - полярные. Характерны для жидких и газообразных веществ (при н.у.). Так как молекулярные взаимодействия слабые, то и кристаллические решетки эти будут нетвердые, летучие и с низкой температурой плавления. К таким решеткам относят твердую органику (сахар, глюкоза, нафталин).
В атомных кристаллических решетках в узлах находятся атомы, связанные друг с другом прочными ковалентными связями. Такая решетка характерна простым веществам неметаллам, которые при нормальных условиях находятся в твердом состоянии, например алмаз. Температура плавления у подобных веществ очень высокая, они прочные, твердые и нерастворимы в воде.
Металлические решетки характеризуются тем, что в узлах находятся атомы или ионы одного или нескольких металлов (у сплавов). Для металлических решеток характерно наличие так называемого общего электронного облака. Так как непрерывно происходит процесс перехода валентных электронов одного атома к другому с образованием иона, то можно говорить о том, что электроны свободно двигаются в объеме всего металла. Этим свойством объясняется электро- и теплопроводность металлов. Вещества такого строения ковки и пластичны.
Вообще в материаловедении для изучения кристаллических структур существует множество методов, основанных на свойствах рентгеновского излучения (дифракция, интерференция), электронографический анализ и другие. Но если вы хотите просто определить тип решетки вещества известного состава, нужно понять к какому классу веществ оно относится и какие физико-химические свойства имеет.