1. По назначению
По характеру использования
[Дементьев Б. А. Ядерные энергетические реакторы. — М.: Энергоатомиздат, 1990. — С. 21—22. — 351 с. — ISBN 5-283-03836-X];
[Бартоломей Г. Г., Бать Г. А., Байбаков В. Д., Алхутов М. С. Основы теории и методы расчёта ядерных энергетических реакторов / Под ред. Г. А. Батя. — М.: Энергоиздат, 1982. — С. 31. — 511 с.];
[Angelo, Joseph A. Nuclear technology. — USA: Greenwood Press, 2004. — P. 275—276. — 647 p. — (Sourcebooks in modern technology). — ISBN 1-57356-336-6]
ядерные реакторы делятся на:
- Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт. В отдельную группу выделяют:
-- Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения — морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.
- Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт.
- Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
- Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным относят реакторы, использующиеся для опреснения морской воды.
Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.
2. По спектру нейтронов
- Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
- Реактор на быстрых нейтронах («быстрый реактор»)
- Реактор на промежуточных нейтронах
- Реактор со смешанным спектром
3. По размещению топлива
- Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
- Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).
В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.
Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.
4. По виду топлива
По изотопу:
- изотопы урана 235U, 238U, 233U
- изотоп плутония 239Pu, также изотопы 239-242Pu в виде смеси с 238U (MOX-топливо)
- изотоп тория 232Th (посредством преобразования в 233U)
По степени обогащения:
- природный уран
- слабо обогащённый уран
- высоко обогащённый уран
По химическому составу:
- металлический U
- UO2 (диоксид урана)
- UC (карбид урана) и т.д.
Объяснение:
Задание 1
Дано:
p = 1·10⁵ Па
ρ = 1,5 кг/м³
<v> - ?
Запишем основное уравнение МКТ в виде
p = (1/3)·ρ·<vср>²
Откуда:
<vср> = √ (3·p/ρ) = √ (3·1·10⁵/1,5) ≈ 450 м/с
Задание 2
ответ: 1) Температура связана со средней кинетической энергией
молекул
Задание 3
Температура:
1) Является мерой средней кинетической энергии тел
2) Является характеристикой теплового равновесия
Задание 4
T = 273 + t
t = T - 273 = 200 - 273 = - 73°C
Задание 5
Дано:
<E> = 6·10⁻²¹ Дж
T - ?
<E> = (3/2)·k·T
T = 2·<E> / k = 2· 6·10⁻²¹ / (1,38·10⁻²³) ≈ 870 K
Задание 6
ν = 2 моль
t = - 20⁰C; T = 273+t = 273-20 = 250 K
V = 10 л = 10·10⁻³ м³
p - ?
Из уравнения Менделеева-Клапейрона
p·V = v·R·T
находим:
p = v·R·T / V = 2·8,31·250 / (10·10⁻³) ≈ 420 кПа
Поделитесь своими знаниями, ответьте на вопрос:
1)поезд идет со скоростью 45 км/ч.выразите его скорость в м/с 2)земля движется вокруг солнца со средней скоростью 30 км/с.на какое расстояние земля перемещается по своей орбите в течении часа? 3)автомобиль проезжает первые 1, 5 км пути за 2, 5 мин, а последующие 5 км-за 5 мин.чему равна средняя скорость автомобиля на всем пути? 4) рассчитайте, за какое время солнечный свет достигает земли, если расстояние от земли до солнца составляет примерно 150 млн.км. скорость света равна 300000 км/с. 5) трамвай первые 25 м двигался со скоростью 2, 5 м/с, а следующие 300 м со скоростью 10 м/с. определите среднюю скорость трамвая на всем пути. с объяснениниями
45 км/час=45/3,6=12,5 м/сек
2)Земля движется вокруг Солнца со средней скоростью 30 км/с.На какое расстояние Земля перемещается по своей орбите в течении часа?
1 час=3600 сек s=30*3600=108 000 км
3)Автомобиль проезжает первые 1,5 км пути за 2,5 мин, а последующие 5 км-за 5 мин.Чему равна средняя скорость автомобиля на всем пути?
vср=s/t=(1.5+5)/(1.5/2.5+5/5)=6.5/1.6=4.0625 км/мин
4) Рассчитайте, за какое время солнечный свет достигает Земли, если расстояние от Земли до Солнца составляет примерно 150 млн.км. Скорость света равна 300000 км/с.
t=150000000/300000 =500 cек= 8мин 20 сек
5) Трамвай первые 25 м двигался со скоростью 2,5 м/с, а следующие 300 м со скоростью 10 м/с. Определите среднюю скорость трамвая на всем пути.
vср=(25+300)/(25/2.5+300/10)=325/40=8.125 м/сек≈30 км/час