А(4) и В(10), |4-10|=6
Пошаговое объяснение:
Определим координаты точек A и B:
1) Справа от точки 0 на единичной дальности отмечена число 1, что означает справа от точки 0 направление положительное и цена деления равна 1;
2) точка А отдалена от точки 0 на 4 единицы в положительном направлении, поэтому имеет координату 4, то есть А(4);
3) точка В отдалена от точки 0 на 10 единицы в положительном направлении, поэтому имеет координату 10, то есть В(10).
Расстояние между двумя точками А(x₁) и В(x₂) определяется по формуле AB= |x₁-x₂|. Поэтому расстояние между точками А(4) и В(10) равна |4-10|.
С другой стороны, по рисунку видно, что между точками А(4) и В(10) находится 6 единичных отрезков, поэтому расстояние между точками А(4) и В(10) равно 6.
Тогда |4-10|=6.
Объяснение:
ответ
Пусть длина диагонали ВД = 4 * Х, тогда диагональ АС = 7 * Х см.
Диагонали параллелограмма, в точке их пересечения, делятся пополам, тогда ОВ = ВД / 2 = 2 * Х см.
В треугольнике АВС отрезок ВО есть его медиана, так как точка О делит АС пополам.
По формуле медианы треугольника:
ВО2 = (2 * АВ2 + 2 * ВС2 – АС2) / 4.
4 * Х2 = (98 + 162 – 49 * Х2) / 4.
16 * Х2 + 49 * Х2 = 260.
Х2 = 260 / 65 = 4.
Х = 2.
ВД = 2 * 4 = 8 см, АД = 2 * 7 = 14 см.
ответ: Диагонали параллелограмма равны 8 см и 14 см.
Объяснение дай лучший ответ
Поделитесь своими знаниями, ответьте на вопрос:
Известно, что на оси ox точка m(-5) делит отрезок cb в отношении "лямбда"= -3/4. найдите координаты точек b и c, если: а) (bc)x = 1; б) (bc)x = -2.