papanovar
?>

Abcd-равнобедренная трапеция.назовите признак, по которому равны треугольники abc и dcb.укажите равные элементы

Геометрия

Ответы

ainud
Треугольник авс= треугольнику асд по первому признаку. ас-общая сторона, ад=сд т. к. авсд равнобедренная трапеция, уголвсд=уголсад как соответственные углы параллельных прямых вс и ад и секущей ас
martinson

Объяснение: ЗАДАНИЕ 3.3

Если боковое ребро составляет с основанием угол 45, то треугольник, который образуют высота и основание пирамиды является прямоугольным и равнобедренным, в котором высота пирамиды и проэкция рёбра на основание являются катетами а боковое ребро - гипотенузой, поэтому высота пирамиды тоже будет 10см. Также в прямоугольном равнобедренном треугольнике гипотенуза в √2 раз больше катета, поэтому боковое ребро=10√2см. Если провести апофему, то она делит боковую грань и сторону основания пополам, образуя при этом 2 прямоугольных треугольника, поскольку боковая грань тоже является равнобедренным треугольником, поэтому апофема является биссектрисой и высотой. Так как сторона основания дклится пополам то половина основания будет 10/2=5см. Найдё апофему по теореме Пифагора:

Апоф²=(10√2)²-5²=100×2-25=200-25=175;

Апоф=√175=√3×25=5√3см

Апоф=5√3см.

Теперь найдём площадь боковой грани пирамиды по формуле:

Sбок.гр=½×а×h, где а- сторона основания, а h- апофема, (высота) проведённая к этой стороне.

Sбок.гр=½×10×5√3=5×5√3=25√3см². Так как таких граней в пирамиде 3 то мы можем найти площадь боковой поверхности: Sбок.пов=25√3×3=75√3см²

ОТВЕТ: Sбок.пов=75√3

ЗАДАНИЕ 3.4

Боковое ребро и высота пирамиды вместе с основанием образуют прямоугольный треугольник, в котором проэкция бокового рёбра на основание и высота пирамиды являются катетами а боковое ребро - гипотенузой. Найдём величину проэкция на основание по теореме Пифагора:

Проэк²=бок.р²-выс²=5²-3²=25-9=16;

Проэк=√16=4см

Если провести вторую такую же проэкцию от соседнего ребра, то получится равнобедренный прямоугольный треугольник, в котором 2 проэкции являются катетами а сторона основания - гипотенузой и катеты равны между собой. Гипотенуза в равнобедренном прямоугольном треугольнике больше катета в √2 раз, поэтому сторона основания =4√2см. Так как в правильной четырёхугольной пирамиде в основании лежит квадрата, то его площадь вычисляется по формуле: S=a², где а - его сторона. Найдём площадь основания используя эту формулу: Sосн=(4√2)²=16×2=32см²

Теперь, зная основание пирамиды и её высоту найдём её объем по формуле:

V=⅓×Sосн×h, где h- высота пирамиды:

V=⅓×32×3=32см³.

ОТВЕТ: V=32см³

elizabetmaslova3

Выясним соотношения между катетами и гипотенузой треугольника. Пусть гипотенуза равна 2х, тогда один катет  равен х(тот, что лежит против угла в 30гр.), а другой 2х · cos 30 = 2x·0.5√3 = x√3/

Радиус вписанной в прямоугольник окружности равен

r = ( a + b - c):2, где а и b -катеты, а с - гипотенуза.

r = ( х + х√3 - 2х):2 = 0,5х(√3 - 1)

0,5х(√3 - 1) = 4

Отсюда х = 8/(√3 - 1)

Периметр треугольника: Р = 2х + х + х√3 = х(3 + √3). Полупериметр р = 0,5х(3 + √3)

Площадь треугольника S = r·p = 4·0,5х(3 + √3) = 2х(3 + √3)

Подставим х = 8/(√3 - 1) и получим

S = 2·(3 + √3)·8/(√3 - 1)

S = 16√3·(√3 + 1)/(√3 - 1)

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Abcd-равнобедренная трапеция.назовите признак, по которому равны треугольники abc и dcb.укажите равные элементы
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

denspiel
ska67mto3983
kattarina71
lionmost6979
akopovarch
meu72
gymnazium
Moroshkina-Aristova2011
ksvish2012
danielianruz
vnolenev
mzia-mzia-60682
info46
yulialoveinthelow2010
Cannabikh