glebshramko
?>

24. определите слово с буквой с на конце приставки.a) b) c) д) 25. определите слово с приставкой при —a) b) с) д) 26. в каком из слов в корне пишется еа) b) c) д) 27. найдите строчку синонимова) вера — невериеb) недостаток - избытокc) поздно - ранод) немного — маленько28. определите тип односоставного предложения: ​

Геометрия

Ответы

abdulhakovalily22

Научная библиотека

 

Математический справочник

 

ЕГЭ и ОГЭ

 

Наш канал

 

Скидка 25%! Курсы ЕГЭ и ОГЭ

[email protected]

Научная библиотека

Главная > Курс высшей математике, Т.3. Ч. 1

<< Предыдущий параграф

Следующий параграф >>

<< Предыдущий параграфСледующий параграф >>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Пусть имеется бесконечная последовательность векторов  Будем говорить, что эта последовательность стремится к вектору , или что вектор v есть предел этой последовательности, если при 

Обозначая через  составляющие  а через  составляющие v, можем написать условие (245) в раскрытом виде:

Раз сумма неотрицательных слагаемых должна стремиться к нулю, то то же можно утверждать и о каждом слагаемом, т. е. из (246) следует

т. е. каждая составляющая  должна стремиться к соответствующей составляющей . Подробнее говоря, вещественная и мнимая части должны стремиться к вещественной и мнимой частям 

annayarikova
В стандартной школьной евклидовой геометрии всего тринадцать аксиом. Из них девять аксиом - это аксиомы планиметрии, а ещё четыре - это аксиомы стереометрии. Вот аксиомы планиметрии: А1.Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки не принадлежащие этой прямой. Через любые две точки можно провести прямую и только одну. А2. Из трёх точек на прямой одна о только одна лежит между двумя другими. А3 Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. А4 Всякая прямая разбивает плоскость на две полуплоскости. Если две точки принадлежат одной полуплоскости, то отрезок с концами в этих точках не пересекает прямую. Если две точки принадлежат разным полуплоскостям, то отрезок с концами в этих точках пересекает прямую. А5 Каждый угол имеет определенную градусную меру, большую нуля. Градусная мера угла равна сумме градусных мер углов на которые он разбивается любым лучом, проходящим между его сторонами. Градусная мера развёрнутого угла принимается равной 180 градусам. А6 На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один. А7 От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180, и только один. А8 Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой. А9 Через точку не лежащую на данной прямой можно провести прямую на плоскости, параллельную данной прямой и притом только одну. Это знаменитый пятый постулат Евклида. На этих девяти аксиомах базируется весь курс планиметрии - геометрии на плоскости. Все теоремы доказываются на основе либо этих аксиом, либо ранее доказанных теорем. Любая теорема доказывается и любая задача решается в конечном итоге сведением к одной или нескольким аксиомам. В этом фундаментальное значение этих аксиом. Иногда к аксиомам добавляют и простые и очевидные законы логики и теории множеств. Например, если некоторая точка лежит на данном отрезке, который, в свою очередь лежит на данной прямой, то эта точка лежит на данной прямой. Если в процессе доказательства теоремы выдвигается предположение, противоположное смыслу теоремы, и из этого предположения на основе опять-таки этих аксиом получается, что некоторая точка принадлежит некоторой прямой и одновременно не принадлежит ей, то это противоречие опровергает выдвинутое предположение и теорема считается доказанной (метод от противного). К аксиомам стереометрии причисляют сформулированные девять аксиом планиметрии (с учётом того, что каждая из них верна в некоторой плоскости) и ещё добавляются четыре аксиомы: Аксиомы стереометрии В1 Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости и точки, не принадлежащие этой плоскости Через любые три точки, не лежащие на одной прямой, можно провести плоскости и притом только одну. В2 Если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости. В3. Всякая плоскость разбивает пространство на два полупространства. Если две точки принадлежат одному полупространству, то отрезок с концами в этих точках не пересекает плоскость. Если две точки принадлежат разным полупространствам, то отрезок с концами в этих точках пересекает плоскость. Иногда эту аксиому в школьной программе не рассматривают. В4: Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей. Как и в планиметрии, в стереометрии набор этих аксиом лежит в основе доказательства любой теоремы и решения любой задачи.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

24. определите слово с буквой с на конце приставки.a) b) c) д) 25. определите слово с приставкой при —a) b) с) д) 26. в каком из слов в корне пишется еа) b) c) д) 27. найдите строчку синонимова) вера — невериеb) недостаток - избытокc) поздно - ранод) немного — маленько28. определите тип односоставного предложения: ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Akopovich802
fokolimp
dg9792794674
Овчинников_Грузман
POMILEVAVladimirovna269
Вячеславович-Дмитрий1694
сузанна_Людмила
terma-msk1
SAMSCHOOL96
Alexander2035
Александр1991
Кашихина
Татьяна_Полулях
Николаевич1033
gena1981007