Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
ответ: г) 50*; а) 35 см. в) 60*
Объяснение:
1) Сумма углов любого правильного прямоугольника равны 180*.
В данном четырехугольнике∠В=∠D=130*.
Следовательно ∠А=∠С= 360-(130*2)/2=50*.
********
2) Р=(АВ+ВС)*2;
Обозначим АВ =х, тогда ВС=х+15. Зная, что Р=110, составим уравнение:
(х+х+15)*2=110;
4х+30=110;
4х=80;
х=20 (см)- меньшая сторона.
20+15=35 см - большая сторона четырехугольника.
***************
Диагонали в точке пересечения делятся на равные части:
ВМ=MD=15 см, АМ=СМ=10см. Следовательно четырехугольник - параллелограмм, у которого противоположные стороны и углы равны. ∠А=∠С=120*, ∠В=∠D и в сумме равны 360*.
∠В=∠D=(360*-2*120*)/2=(360*-240*)/2=60*. (ответ: в) 60*)
Поделитесь своими знаниями, ответьте на вопрос:
Радіус основи конуса дорівнює 5 см, його твірна утворює з висотою кут 30 градусів. знайдіть твірну конуса