ответ: вторая высота равна либо дм , либо 6 дм .
ΔАВС , АС=18 дм , АВ=12 дм , СМ ⊥ АВ , ВР ⊥ АС .
Одна из высот равна 4 дм .
Так как в условии не сказано, какая высота равна 4 дм , то рассмотрим два случая .
1) Пусть задана высота СМ=4 дм .
Запишем, чему равна площадь ΔАВС в двух вариантах.
S=0,5*AB*CM = 0,5*AC*BP ⇒ АВ*СМ=АС*ВР .
Заменим стороны и высоту известными числами .
12*4=18*ВР , 48=18*ВР , ВР=48:18=2 и 2/3 дм
2) Пусть задана высота ВР=4 дм .
Аналогично имеем АВ*СМ=АС*ВР , 12*СМ=18*4 , 12*СМ=72 ,
СМ=72:12=6 дм
Дано:
а||b
c - секущая
∠5=33°
Найти: ∠6,∠7,∠2,∠5,∠4,∠1,∠3,∠8
∠5=33°
1)∠2 и ∠5 - вертикальные
∠2=∠5=33° (по св-ву вертикальных углов)
2) ∠6- смежный с ∠5
∠6+∠5=180° (по св-ву смежных углов)
∠6=180°-∠5=180°-33°=147°
3) ∠4 и ∠6 - вертикальные
∠4=∠6=147° (по св-ву вертикальных углов)
a||b
4) ∠1 и ∠4 - накрест лежащие при прямых а и b
∠1=∠4=147° (по обратной теореме параллельных прямых)
5) ∠3 и ∠2 - накрест лежащие
∠3=∠2=33° ( по обратной теореме параллельных прямых)
6) ∠8 и ∠4 - соответственные при прямых а и b
∠8=∠4 =147° ( по обратной теореме параллельных прямых)
7) ∠7 и ∠2 -соответственные при прямых а и b
∠7=∠2=33° (по обратной теореме параллельных прямых)
ответ: 33°,33°,147°,147°,33°,33°,147°,147°
Поделитесь своими знаниями, ответьте на вопрос:
Найдите сумму углов выпуклого семиугольника