Дан ромб ABCD; AB=5см; AC+BD=18см.
Найти S(ABCD).
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам. Пусть AC∩BD=O.
AO+BO = AC:2+BD:2 = (AC+BD):2 = 18см:2 = 14см
ΔABO - прямоугольный (∠O=90°). Пусть AO=x см, тогда BO=14-х см
По теореме Пифагора:
AO²+BO² = AB² ⇒ x²+(14-x)²=100²
2x²-28x+96 = 0; x²-14x+48 = 0; x(x-8)-6(x-8) = 0; (x-8)(x-6) = 0
x=6 или x=8
Если AO=6см, то ВО=8см, АС=12см, BD=16см
Если АО=8см, то ВО=6см, АС=16см, BD=12см
Получается ABCD это ромб с диагоналями, равными 16см и 12см.
Площадь ромба равна полупроизведению его диагоналей.
S(ABCD) = = 16·12:2 см² = 8·12 см² = 96см²
ответ: 96см².
Объяснение:
В ΔАВС:АС=2*2=4(см)(гипотенуза=удвоенному катету,лежащему напротив
угла 30 градусов)
ВС²=АС²-АВ² ⇒ВС=√4²-2²=2√3(см).
Sосн=1/2*АВ*СВ=1/2*2*2√3=2√3(см²).
Sбок=Р*Н=(2+4+2√3)*2√3=12√3+12=12(√3 +1)(см²).
1) Sполн=2Sосн+Sбок=2*2√3+12(√3 +1)=4√3+12√3+12=16√3+12(см²).
2) ПлоскостьА1ВC-тр-к,уголА1ВС=90 градусов(теорема о трех перпендикулярах)
SΔ=1/2А1В*ВС; из ΔА1АВ найдем A1B : A1B²=АА1²+АВ²;
A1B=√(2√3)²+2²=√12+4=√16=4(см).
SΔА1ВС=1/2*4*2√3=4√3(см²).
3) Двугранный угол между плоскостямиА1ВС иАВС лежит в плоскости,перпендикулярной ВС.(плоскостьАА1В1В) это уголА1ВА.=α
tgα=2√3/2=√3 ⇒α=60 градусов.
4) СС1 параллельнаВВ1.гол между прямой плоскостью ищем в плоскостиАА1ВВ1,перпендикулярнойплоскостиА1ВС.Это уголА1ВВ1.
уголА1ВВ1.=90-α=90-60=30(градусов).
5) АВ1 лежит в плоскости,перпендикулярной А1ВС.(По теореме о трех перпендику
лярах),значит,и плоскость перпендикулярна А1ВС.
Поделитесь своими знаниями, ответьте на вопрос:
Впараллелограмме mnpk диагонали mp и nk равны 20 см и 8 см соответственно. найдите стороны параллелограмма, если диагонали образуют угол, равный 60 градусам