1). на произвольной прямой отложить отрезок, равный стороне ав. обозначить на концах отрезка вершины треугольника: точки а и в.
2) из точки а как из центра раствором циркуля радиусом, равным длине стороны ас, начертить дугу.
3) из т.в как из центра раствором циркуля радиусом, равным длине стороны вс, начертить дугу до пересечения с первой дугой.
точка пересечения дуг – вершина с искомого треугольника. соединив а и с, в и с, получим треугольник со сторонами заданной длины.
б) построение срединного перпендикулярна стандартное.
из т.а и т.в как из центров провести полуокружности произвольного, но равного радиуса несколько больше половины ав так, чтобы они пересеклись по обе стороны от ав (т.к и т. н).
точки пересечения к и н этих полуокружностей соединить.
соединить а и н, в и н. четырехугольник аквн - ромб ( стороны равны взятому радиусу). диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам. =>
ам=мв и км перпендикулярно ав.
км - срединный перпендикуляр к стороне ам.
точно так же делят отрезок пополам.
Поделитесь своими знаниями, ответьте на вопрос:
Точки fи t- соответственно середины рёбер ad и ac тетраэдра dabc , длина ребра которого равна 6 см. вычислите периметр треугольника bft.