13 см
Объяснение:
Диагонали ромба пересекаются под прямым углом, точкой пересечения делятся пополам и делят ромб на 4 равных прямоугольных треугольника с катетами 40:2=20 см, и 30:2=15 см. Стороны ромба - гипотенузы этих треугольников. По т.Пифагора АВ=√(AO²+BO²)=√(20²+15²)=25 см..
Расстояние от точки до прямой измеряется длиной проведенного между ними перпендикуляра. Наклонная КН - искомое расстояние- перпендикулярна АВ, ОН - её проекция. По т. о трех перпендикулярах ОН перпендикулярна АВ и является высотой треугольника АОВ.
Центр ромба О равноудален от его сторон. ОН=2S(АОВ):АВ=20•15:25=12 см.
КО перпендикулярен плоскости ромба ABCD ⇒ ∆ KOН прямоугольный. КН=√(КО²+ОН²)=√(25+144)=13 см
Поделитесь своими знаниями, ответьте на вопрос:
1.дано: a b, 1 = 70°. вычислите градусные меры углов 2 и 3. 2.в треугольнике abc bac = 32°, внешний угол при вершине b равен 126°. вычислите градусные меры углов abc и acb. 3.в прямоугольном треугольнике биссектриса наибольшего угла образует с гипотенузой углы, один из которых в два раза больше другого. найдите острые углы данного треугольника.