Проекции катетов на гипотенузу - отрезки гипотенузы, полученные в результате проведения высоты к гипотенузе.
Проще говоря, проведи высоту к гипотенузе. Отрезки, на которые поделила эта высота гипотенузу и будут проекциями катетов на гипотенузу.
Итак, высота прямоугольного треугольника, проведённая к гипотенузе равна квадратному корню из произведения проекций катетов на гипотенузу.
Высота, проведённая к гипотенузе (проведённая из вершины прямого угла =
\sqrt{2 cm*8cm} =\sqrt{16 cm^{2} } = 4 cm
2cm∗8cm
=
16cm
2
=4cm
ответ: 4 см.
(Если что-то не понятно, то спрашивайте.)
ответ короч
Объяснение:
Дано:
∆АВС - прямокутний (∟В = 90°).
∆А1В1С1 - прямокутний (∟В1 = 90°).
ВС = B1C1; BN - бісектриса ∟АВС;
B1N1 - бісектриса ∆А1В1С1.
Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою ∟ABC = 90° i BN - бісектриса ∟ABC.
За означенням бкектриси кута маємо: ∟ABN = ∟NBC = 90° : 2 = 45°.
Аналогічно B1N1 - бісектриса ∟А1В1С1, тоді ∟A1B1N1 = ∟N1B1C1 = 45°.
Розглянемо ∆NBC i ∆N1B1C1:
1) BN = B1N1 (за умовою);
2) ВС = В1С1 (за умовою);
3) ∟NBC = ∟N1B1C1 = 45°.
За I ознакою piвностi трикутників маємо:
∆NВС = ∆N1B1C1. Звідси ∟C = ∟С1.
Розглянемо ∆АВС i ∆А1В1С1:
1) ∟ABC = ∟А1В1С1 = 90°;
2) ВС = B1C1;
3) ∟C = ∟С1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике авс ав=ас, ав=6, cosв = корень из 3 / 2. найдите его площадь. ****