ответ:tgα∗ctgα=1
а) tg \alpha =2tgα=2 ctg \alpha =1:2= 0,5ctgα=1:2=0,5
\frac{tg a+ctg a}{tg a-ctg a}= \frac{2+0,5}{2-0,5}= \frac{2,5}{1,5}= \frac{5}{3}=1 \frac{2}{3}
tga−ctga
tga+ctga
=
2−0,5
2+0,5
=
1,5
2,5
=
3
5
=1
3
2
б) \frac{sin \alpha }{cos \alpha }=2
cosα
sinα
=2 sin \alpha =2*cos \alphasinα=2∗cosα
\frac{sin a -cos a}{sin a+cos a} = \frac{2*cos a-cos a}{2*cos a+cos a}= \frac{cosa}{3cosa} = \frac{1}{3}
sina+cosa
sina−cosa
=
2∗cosa+cosa
2∗cosa−cosa
=
3cosa
cosa
=
3
1
в) \frac{2sin a+3cos a}{3sin a-7cos a} = \frac{4cos a+3cos a}{6cos a-7cos a} = \frac{7cos a}{-cos a}= \frac{7}{-1}=-7
3sina−7cosa
2sina+3cosa
=
6cosa−7cosa
4cosa+3cosa
=
−cosa
7cosa
=
−1
7
=−7
г) \frac{sin^2a+2cos^2 a}{sin^2a-2cos^2 a}= \frac{(2*cos a)^2+2cos^2 a}{(2*cos a)^2-2cos^2 a}= \frac{4cos^2 a+2cos^2 a}{4cos^2 a-2cos^2 a}= \frac{6cos^2 a}{2cos^2 a} = \frac{6}{2}=3
sin
2
a−2cos
2
a
sin
2
a+2cos
2
a
=
(2∗cosa)
2
−2cos
2
a
(2∗cosa)
2
+2cos
2
a
=
4cos
2
a−2cos
2
a
4cos
2
a+2cos
2
a
=
2cos
2
a
6cos
2
a
=
2
6
=3
Пусть A1, B1 и C1 — середины BC, AC и AB соответственно, O — центр данной окружности, $ \angle$ACB = $ \alpha$.
Поскольку $ \angle$A1C1B1 = $ \angle$ACB = $ \alpha$, то треугольник A1B1C1 равен треугольнику B1A1C. Следовательно, радиусы данной окружности и окружности, описанной около треугольника A1B1C, равны.
Пусть прямая OC пересекает вторую окружность в точке M. Тогда MA1 = MB1 и OA1 = OB1. Поэтому, если точки O и M не совпадают, то OC $ \perp$ A1B1, а т.к. CO — биссектриса угла ACB, то CA1 = CB1 и AC = BC = 4. В этом случае
AC + BC = 4 + 4 = 8 < 2$\displaystyle \sqrt{19}$ = AB,
что невозможно. Значит, предположение о том, что точки M и O совпадают, не верно.
Таким образом, центр второй окружности лежит на первой. Тогда
$\displaystyle \angle$A1OB1 + $\displaystyle \angle$A1CB1 = 180o,
т.е.
2$\displaystyle \alpha$ + $\displaystyle \alpha$ = 180o, $\displaystyle \alpha$ = 60o.
Обозначим AC = x. Тогда по теореме косинусов
x2 + 16 - 4x = (2$\displaystyle \sqrt{19}$)2.
Из этого уравнения находим, что x = 10.
ответ
10.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Биссектриса pc и медиана qa треугольника pqr взаимно перпендикулярны и пересекаются в точке f. площадь треугольника pqr равна 40. найдите площадь треугольника fpq.