ответ: АВ = 5; ВО = 12; ДО = 20; ДМ = 15; МО = 25; ON = 24; ОР = 18.
Объяснение: Для нахождения сторон применим теорему Пифагора, которая гласит: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
На рисунке все треугольники кроме треугольника АВО являются прямоугольными. В треугольнике АВО не указан угол 90 градусов. Но, можно предполагать, что линия ДВА является прямой. Если это так, то и треугольник АВО будет прямоугольным. Будем исходить из того, что линия ДВА - прямая. И так.
АВ = √(СВ² +АС²) = √(4² + 3²) = √25 = 5
ВО = √(АО² - АВ²) = √(13²- 5²) = √144 = 12
ДО = √(ДВ²+ВО²) = √(16² +12²) =√400 = 20
ДМ = √(ДК²+КМ²) = √(12²+9²) = √225 = 15
МО = √(ДО² + ДМ²) = √(20² + 15²) = √625 = 25
ON = √(ОМ² - MN²) = √(25² - 7²) = √576 = 24
ОР = √(PN² - NO²) = √(30² - 24²) = √324 = 18
АВ и АС - радиусы окружности с центром в точке А, ОD и ОЕ - радиусы окружности с центром в точке О, а по построению эти окружности имеют одинаковые радиусы, следовательно, АВ = ОD, АС = ОЕ. Также по построению радиус DE окружности с центром в точке D равен отрезку ВС, т.е. DE = ВС. Получаем АВС =ODE по 3 признаку равенства треугольников, следовательно, DОЕ =ВАС, т.е. построенный МОЕ равен данному А (т.к. по рисунку видно, что DОЕ совпадает с МОЕ, а ВАС совпадает с А). Что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Две окружности радиусов 18 см и 30 см касаются внутренним образом. найдите расстояние между их центрами