∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°
Квадрат гипотенузы равен сумме квадратов катетов.
Пусть х см - один катет, тогда (х - 14) см - другой катет. Уравнение:
х² + (х - 14)² = 34²
х² + (х² - 2 · х · 14 + 14²) = 1156
х² + х² - 28х + 196 = 1156
2х² - 28х + 196 - 1156 = 0
2х² - 28х - 960 = 0
х² - 14х - 480 = 0
D = b² - 4ac = (-14)² - 4 · 1 · (-480) = 196 + 1920 = 2116
√D = √2116 = 46
х₁ = (14-46)/(2·1) = (-32)/2 = -16 (не подходит, так как < 0)
х₂ = (14+46)/(2·1) = 60/2 = 30 (см) - один катет
30 - 14 = 16 (см) - другой катет
ответ: 30 см и 16 см.
Проверка:
30² + 16² = 34²
900 + 256 = 1156
1156 = 1156 - верно
Поделитесь своими знаниями, ответьте на вопрос:
Угол при вершине противолежащей основанию равен 30 найдите боковую сторону треугольника если его площадь равна 529"