см
∠AOB=90°
∠ABO=50°
∠BAO=40°
Объяснение:
Дано: ABCD - ромб
CD = 3 см
AC = 9 см
BD = 8 см
∠C = 80°
Найти: PΔ = ?
∠AOB=?
∠ABO=?
∠BAO=?
Решение: т.к ABCD - ромб, то у него все стороны равны ⇒ CD=BC=AB=AD=3 см
Диагонали ромба точкой пересечения делятся пополам: BO=OD=8/2=4 см; AO=OC=9/2=4,5 см
Противолежащие углы ромба равны ⇒ ∠C=∠A=80°, но т.к диагонали ромба являются биссектрисами его углов, то ∠OAD=∠BAO=80/2=40°
Диагонали ромба пересекаются под прямым углом ⇒ ∠AOB=90°
В ΔABO - прямоугольном, найдем ∠ABO. Сумма острых углов в прямоугольном треугольнике = 90°
∠ABO+∠BAO=90; ∠ABO=90-∠BAO; ∠ABO=90-40; ∠ABO=50°
Периметр - сумма длин всех сторон, тогда см
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник abc прямоугольный с прямым углом c, отрезок cd является его высотой.докажите что у треугольников abc и acd углы соответственно равны
24см²
Объяснение:
△ABD - равнобедренный т.к. AB = BD по условию,
Пусть BH - высота, она проведена к основанию,
Высота равнобедренного треугольника, проведённая к его основанию является так же и медианой.
⇒ BH - медиана;
AH = HD т.к. H - основание медианы;
AH = AD:2 = 6см:2 = 3см.
△AHB - прямоугольный т.к. ∠AHB = 90°,
Квадрат гипотенузы равен сумме квадратов катетов (т. Пифагора).
AB² = AH²+BH²;
BH² = AB²-AH²;
BH² = 5²-3²;
BH² = 25-9 = 16 = 4²;
BH = 4 см.
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
BH - высота параллелограмма ABCD, проведённая к стороне AD;
S = BH·AD;
S = 4см·6см = 24см².