На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответствующие элементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
хорда 8 см
треугольник равносторонний, расстояние от центра окружности до хорды есть радиус вписанной в треугольник окружности, который найдем по формуле:
r=корень из -а)(р-в)(р-с)) / р) , где р - полупериметр, равный 8*3/2=12см, тогда подставив получим :
r=корень из((4*4*4) / 12)=корень из (64/12)=4/корень из 3 см
из второй окружности : правильный четырехугольник - квадрат, тогда расстояние от центра до хорды = 1/2 стороны квадрата=1/2*8=8/2=4 см
расстояние между центрами этих окружностей= (4/корень из 3)+4=4+4/корень из 3 см
ответ : расстояние между центрами этих окружностей 4+4/корень из 3 см
удачи ! )
Поделитесь своими знаниями, ответьте на вопрос:
если построить эти две хорды, а затем соединить точки перечения хорд с центром окружности то получится ромб со сторонами равными радиусу и меньшей диагональю также равно радиусу. следовательно, меньшие углы 60 градусов, а искомый - 120
если нужно пришлю рисунок, на котором это все видно.