Винников724
?>

Стороны параллелограмма равны 10см и 9см. вычислите его площадь если один из углов равен 45°.​

Геометрия

Ответы

petria742

Объяснение:

ozr99s6rea5z6eiz6zryzr6ozr6ryzd858fydy8u9vuv92d,uv9v2ru9ruh9xu9v2ruv9f2x9uvr22ubfc99uhrx9ubfxwvu92rx9fwuvu9w 9ugdw,you suov wdvu9dw,uv9fx2yg9rx2g9yxd29ugr2u9g1rgy91ry9ge1gx79xegu9x1r97g2ruv9x2ur9g9ygrx2yv9r2u9h2vou2royvfw0uh,9dwuv vu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr27h0rxxf9y2ry9gr2y9gvu0dxvu0d2x2xd0guw0cfhuuv0xf2hu0fc2v0ud2u0gr2 2x9ugx7g0r7hr0uh0r27h0r70grch70cr2ug0r2u0grdhu0 is uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0uv9u9gxr9uv2rxuv92xu9vuv9vu9r2xu0vr2u0gr270hrc2h0uc2uv0r2u0v2vu0 is is 0ubu0huh0cu0 0ubu0huh0cu0hcuh0 8hcr8hcrub0f2u0bt2u0b2ubc0 2tub0u0hr2 uh0r70hrcuhrcu9gr2c0uhrv0hurv28h

ashybasaida-33

\boxed{CD = 15}

Объяснение:

Дано: ABCD - трапеция, AB ∩ CD = K, AD = 12, AC = 8,  BC = \dfrac{16}{3}, BK = 8

Найти: CD - ?

Решение: Треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, так как угол ∠AKD - общий, а так как по условию ABCD - трапеция, то по определению трапеции её две стороны являются параллельными, так как по условию AB ∩ CD = K, то следовательно BC║AD, тогда угол ∠KBC = ∠KAD как соответственные углы при параллельных прямых и секущей по теореме (BC║AD; AK - секущая). По свойству отрезка AK = AB + BK. Так как треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, то по свойствам подобных треугольников: \dfrac{AD}{BC} = \dfrac{AK}{BK} \Longleftrightarrow AD \cdot BK = BC \cdot AK.

AD \cdot BK = BC \cdot (AB + BK)

12 \cdot 8 = \dfrac{16}{3} \cdot (AB + 8 )\bigg | \cdot 3

288 = 16(AB + 8)|:16

18 = AB + 8

AB = 10

Рассмотрим треугольник ΔABC. ПО теореме косинусов:

BC^{2} + AC^{2} - 2 \cdot BC \cdot AC \cos \angle ACB = AB^{2}

\cos ACB = \dfrac{BC^{2} + AC^{2} - AB^{2}}{2 \cdot BC \cdot AC} = \dfrac{\left (\dfrac{16}{3} \right)^{2} + 8^{2} - 10^{2}}{2 \cdot \dfrac{16}{3} \cdot 8} = \dfrac{\dfrac{256}{9} + 64 - 100 }{\dfrac{256}{3} } =

= \dfrac{\dfrac{256}{9} - 36 }{\dfrac{256}{3} } = \dfrac{\dfrac{256}{9} - \dfrac{324}{9} }{\dfrac{256}{3} } = \dfrac{\dfrac{256 - 324}{9} }{\dfrac{256}{3} } = -\dfrac{\dfrac{68}{9} }{ \dfrac{256}{3} } = - \dfrac{68 \cdot 3}{256 \cdot 9} = -\dfrac{68}{768} = -\dfrac{17}{192}.

Угол ∠ACB = ∠CAD как внутренние разносторонние углы при при параллельных прямых и секущей по теореме (BC║AD; AK - секущая).

Так как ∠ACB = ∠CAD, то cos ∠ACB =  cos ∠CAD.

По теореме косинусов для треугольника ΔCAD:

CD = \sqrt{AC^{2} + AD^{2} - 2 \cdot AC \cdot AD \cos \angle CAD} = \sqrt{8^{2} + 12^{2} - 2 \cdot 8 \cdot 12\cdot \left (- \dfrac{17}{192} \right)} == \sqrt{64 + 144 + 17} = \sqrt{225} = 15.


НУЖЕН ВАШ НУЖЕН ВАШ ОТВЕТ

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны параллелограмма равны 10см и 9см. вычислите его площадь если один из углов равен 45°.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Матвеев
ddobrov32133
v89167233402
gbfedak220
knyazevskayad
yana2211
EkaterinaSEMENOV702
Екатерина1369
aifbon
sport2293032
aananasAnastiya1270
horina12
catsk8
Novikova
Андреевнатест707