Объяснение:
Привет. Вот там какое решение
Рассмотрим треугольник АВС, у которого АВ≠ВС, ВС≠АС, АВ ≠ АС, пусть ВН - высота ∆ АВС, ВD - биссектриса ∆ АВС, ВМ -медиана ∆ АВС.
НЕ ограничивая общности будем считать, что ВС<АВ, тогда, по доказанному в задаче №346, получим, что точка Н принадлежит лучу
По доказанному в задаче №341, получим, что АD>DС, но
АD+DС=АС, следовательно,
ВМ - медиана, следователь
Получем, что АD>АМ, т.е. точка М при
надлежит отрезку АD, следовательно, точка М принадлежит отрезку АD, следовательно, точка М принадлежит лучу DА, а точка О лежит между точками Ни М, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc отмечены середины m и n сторон bc и ac соответственно. площадь треугольника cnm равна 57. найдите площадь четырехугольника abmn