1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
s = 0,5 *
7π/18 *18² = 0,5 * 7π *18 = 63π
ответ: а)7π; б)63π
1 / 2
3
/ 4
/
/
/
5
/ 6
7 / 8
/ - угол
/1= 107
/2= 180-107=73 т.к. смежный =180
/2=/3=73 накрест лежащие при прямых и
секущей
/3=/6=73 накрест лежащие при прямых и секущей
/6=/7=73 накрест лежащие при прямых и секущей
/1=/4=107 накрест лежащие при прямых и секущей
/4=/5=107 накрест лежащие при прямых и секущей
/5=/8=107 накрест лежащие при прямых и секущей
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном треугольнике угол между гипотенузой и медианой, проведенной к ней, равен 76 градусов. найти больший из двух острых углов прямоугольного треугольника. ответ в градусах.
пусть имеем треугольник abc, ch- высота и cm - медиана
угол мсн = 76 градусов по условию
в прямоугольном треугольнике сmn cумма острых углов смн, мсн равна 90 градусов, то есть угол смн = 90 – угол мсн = 90 – 76 = 14 градусов
треугольник амс равнобедренный, см равна половине гипотенузы , а ам равна половине гипотенузы, так как см - медиана. отсюда следствие, что угол саm равен углу асм по свойству углов при основании равнобедренного треугольника.
угол amc = 180-14=166 градуса
угол сam +угол mca=180-166=14
угол сam =угол mca=14/2=7 градусов
угол сba=90-7=83 градуса