а) Xm=(Xa+Xb)/2 = (4-2)/2=1. Ym=(Ya+Yb)/2= (5-1)/2=2. M(1;2). Xk=(Xa+Xb)/2 = (-2-2)/2=-2. Yk=(Ya+Yb)/2= (5+3)/2=4. K(-2;4).
б) |MC|=√[(Xc-Xm)²+(Yc-Ym)²]=√[(-2-1)²+(3-2)²]=√10.
|KB|=√[(Xb-Xk)²+(Yb-Yk)²]=√[(4+2)²+(-1-4)²]=√61.
в) |MK|=(1/2)*|BC|. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=
√[(-2-4)²+(3+1)²]=√52. |MK|=√52/2=√13.
Или так: |MK|=√[(Xk-Xm)²+(Yk-Ym)²]=√[(-2-1)²+(4-2)²]=√13.
г) |AB|=√[(Xb-Xa)²+(Yb-Ya)²]=√[(4+2)²+(-1-5)²]=6√2. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=√[(-2-4)²+(3+1)²]=√52.
|AC|=√[(Xc-Xa)²+(Yc-Ya)²]=√[(-2+2)²+(3-5)²]=2.
Объяснение:
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
3,4/5
11
axatar
65° и 115°
Объяснение:
Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными, а углы 3 и 6, 4 и 5 называются односторонними (см. рисунок). Заметим, что в таком случае углы 2 и 6 равны: ∠2 = ∠6.
По условию разность двух односторонних углов, то есть ∠6 и ∠3, при пересечении двух параллельных секущей равна 50 градусам:
∠6 - ∠3 = 50°. Тогда по замечанию ∠2 - ∠3 = ∠6 - ∠3 = 50°.
Но углы 2 и 3 смежные и поэтому ∠2 + ∠3 = 180°
Имеем систему равенств:
∠2 - ∠3 = 50° (1)
∠2 + ∠3 = 180° (2)
Из уравнения (1) выразим ∠2 через ∠3:
∠2 = 50° + ∠3
Подставим выражение ∠2 в (2):
50° + ∠3 + ∠3 = 180° или
2·∠3 = 180° - 50° или
2·∠3 = 130° или
∠3 = 130° : 2 = 65°.
Тогда ∠2 = 50° + ∠3 = 50° + 65° = 115°
ответ: 65° и 115°
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольнике меньшая сторона равна 8 см, угол, который образует его диагональ с большей стороной, равен 30 градусов.найдите радиус окружности(в см) описанной вокруг этого прямоугольника! !