andreyduborezz2913
?>

Втреугольникеавс проведена биссектриса вd, угола=63°, уголс=39°а) докажите, что треугольник авс равнобедреный. б) сравните отрезки ad иdc​

Геометрия

Ответы

Fruktova Gazaryan

1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°

Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:

\alpha=\frac{180(n-2)}{n}

Найдем при каком n угол будет равен 160°:

160=\frac{180(n-2)}{n}\\160n=180n-360\\20n=360\\n=18

Т.е. угол в 160° будет у правильного 18-угольника

2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:

R=\frac{a}{\sqrt{3}}

Подставим заданное значение стороны:

R=\frac{6\sqrt{3}}{\sqrt{3}}=6

Следовательно, радиус окружности, описанной около этого треугольника равен 6 см

3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:

\frac{8}{15}*360=192°

а радианная:

=\frac{8}{15}*2\pi=\frac{16\pi}{15}

Длину дуги найдем как 8/15 от длины окружности:

l=\frac{8}{15}*2\pi*R=\frac{8}{15}*2\pi*6=6.4\pi\approx20,1 см

warlordkolomna

Прямая на плоскости. Примеры решений

Задание. Точки А (2,1), В (1,-2), С (-1,0) являются вершинами треугольника АВС.

а) Найти уравнения сторон треугольника АВС.

б) Найти уравнение одной из медиан треугольника АВС.

в) Найти уравнение одной из высот треугольника АВС.

г) Найти уравнение одной из биссектрис треугольника АВС.

д) Найти площадь треугольника АВС.

Решение проводим с калькулятора.

Даны координаты треугольника: A(2,1), B(1,-2), C(-1,0).

1) Координаты векторов

Координаты векторов находим по формуле:

X = xj - xi; Y = yj - yi

здесь X,Y координаты вектора; xi, yi - координаты точки Аi; xj, yj - координаты точки Аj

Например, для вектора AB

X = x2 - x1; Y = y2 - y1

X = 1-2 = -1; Y = -2-1 = -3

AB(-1;-3)

AC(-3;-1)

BC(-2;2)

2) Модули векторов

Длина вектора a(X;Y) выражается через его координаты формулой:

3) Угол между прямыми

Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:

где a1a2 = X1X2 + Y1Y2

Найдем угол между сторонами AB и AC

γ = arccos(0.6) = 53.130

4) Проекция вектора

Проекцию вектора b на вектор a можно найти по формуле:

Найдем проекцию вектора AB на вектор AC

5) Площадь треугольника

Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) - вершины треугольника, тогда его площадь выражается формулой:

В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.

Решение. Принимая A за первую вершину, находим:

По формуле получаем:

6) Деление отрезка в данном отношении

Радиус-вектор r точки A, делящий отрезок AB в отношении AA:AB = m1:m2, определяется формулой:

Координаты точки А находятся по формулам:

Уравнение медианы треугольника

Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.

M(0;-1)

Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(2;1) и М(0;-1), поэтому:

или

или

y = x -1 или y -x +1 = 0

7) Уравнение прямой

Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:

Уравнение прямой AB

или

или

y = 3x -5 или y -3x +5 = 0

Уравнение прямой AC

или

или

y = 1/3x + 1/3 или 3y -x - 1 = 0

Уравнение прямой BC

или

или

y = -x -1 или y + x +1 = 0

8) Длина высоты треугольника, проведенной из вершины A

Расстояние d от точки M1(x1;y1) до прямой Ax + By + С = 0 равно абсолютному значению величины:

Найдем расстояние между точкой A(2;1) и прямой BC (y + x +1 = 0)

9) Уравнение высоты через вершину C

Прямая, проходящая через точку M0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:

Данное уравнение можно найти и другим Для этого найдем угловой коэффициент k1 прямой AB.

Уравнение AB: y = 3x -5, т.е. k1 = 3

Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.

Подставляя вместо k1 угловой коэффициент данной прямой, получим :

3k = -1, откуда k = -1/3

Так как перпендикуляр проходит через точку C(-1,0) и имеет k = -1/3,то будем искать его уравнение в виде: y-y0 = k(x-x0).

Подставляя x0 = -1, k = -1/3, y0 = 0 получим:

y-0 = -1/3(x-(-1))

или

y = -1/3x - 1/3

Уравнение биссектрисы треугольника

Найдем биссектрису угла A. Точку пересечения биссектрисы со стороной BC обозначим М.

Воспользуемся формулой:

Уравнение AB: y -3x +5 = 0, уравнение AC: 3y -x - 1 = 0

^A ≈ 530

Биссектриса делит угол пополам, следовательно угол NAK ≈ 26.50

Тангенс угла наклона AB равен 3 (т.к. y -3x +5 = 0). Угол наклона равен 72

^NKA≈ 1800 - 720 = 1080

^ANK ≈ 1800 - (1080 + 26.50) ≈ 45.50

tg(45.50) = 1

Биссектриса проходит через точку A(2,1), используя формулу, имеем:

y - y0 = k(x - x0)

y - 1 = 1(x - 2)

или

y = x -1

Скачать

Пример. Даны координаты вершин треугольника АВС: А(–3; –1), В(4; 6), С(8; –2).

Требуется: 1) вычислить длину стороны ВС; 2) составить уравнение стороны ВС; 3) найти внутренний угол треугольника при вершине В; 4) составить уравнение высоты АК, проведенной из вершины А; 5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан); 6) сделать чертеж в системе координат.

Задание. Даны координаты вершин треугольника ABC: A(7;4), B(-9;-8), C(-2;16). Требуется:

составить уравнение медианы, проведенной из вершины B, и вычислить ее длину.

составить уравнение высоты, проведенной из вершины A, и вычислить ее длину.

найти косинус внутреннего угла B треугольника ABC.

Сделать чертеж.

Скачать решение

Пример №3. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) длину стороны AB; 2) внутренний угол A в радианах с точностью до 0,001. Сделать чертеж.

Скачать

Пример №4. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) уравнение высоты, проведенной через вершину C; 2) уравнение медианы, проведенной через вершину C; 3) точку пересечения высот треугольника; 4) длину высоты, опущенной из вершины C. Сделать чертеж.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втреугольникеавс проведена биссектриса вd, угола=63°, уголс=39°а) докажите, что треугольник авс равнобедреный. б) сравните отрезки ad иdc​
Ваше имя (никнейм)*
Email*
Комментарий*