Объяснение: ЗАДАНИЕ 1
Площадь шара вычисляется по формуле:
S=4πR², где R- радиус шара=13+6+8=27
S=4π×27²=4π×729=2916(ед²)
Объем шара вычисляется по формуле:
V=4/3πR³=4/3π×27³=4/3π×19683
=26244π(ед³)
ЗАДАНИЕ 2
Обозначим радиусы конуса ОН и О1А. Получилась прямоугольная трапеция ОНАО1. Проведём высоту НН1 к радиусу нижнего основания О1А. Она делит О1А так, что О1А=ОН=6, значит Н1А=14-6=8.
Также получился прямоугольный треугольник НАН1, в котором радиусы основания являются катетами а образующая конуса гипотенузой. Найдём НА по теореме Пифагора:
НА²=НН1²+НА²=13²+8²=169+64=233;
НА=√233
Найдём площадь боковой поверхности конуса по формуле:
Sбок=π(R+R1)HA=π(6+14)×√233=20√233π;
√233≈15,3; 20×15,3π=306π
Найдём площадь верхнего и нижнего оснований по формуле: S=πr²
Sверх.осн=π×6²=36π
Sниж.осн=π×14²=196π
Площадь полной поверхности конуса- это сумма всех его площадей основания и боковой поверхности:
Sпол=Sбок.пов+S2хосн=306π+36π+196π==538π
Sпол=538π
Объём усечённого конуса вычисляется по формуле: V=⅓×πH(R1²+R1×R2+R2²)=
=⅓π×13(6²+6×14+14²)=13π/3(36+84+196)=
=13π/3×316=4108π/3(ед³)
или 1369π целых ⅓
ОТВЕТ: Sпол=538π(ед²); V=4108π/3(ед³)
Поделитесь своими знаниями, ответьте на вопрос:
Скільки вершин має правильний многокутник якщо його внутрішній кут 160 градусів
ответ:
объяснение:
найти угол между прямой 2x+3y-1=0 и прямой проходящей через точки
m₁ (-1; 2) и m ₂(0; 3) .
уравнение прямой проходящей через точки m₁ (-1; 2) и m ₂(0; 3) :
y - 2 = ( 3 - 2 ) /(0 -(-1) *( x -(-1))⇔ x - y +3 = 0
найдем yгол α между прямой 2x+3y - 1=0 и прямой x - y +3 = 0 :
cosα = |a₁a₂ +b₁b₂| /√( a₁² +b₁²) * √(a₂² +b₂²) =
|2*1 +3*(-1)| /√( 2² +3²) * √(1² +(-1)²) = 1 /√ 13 * √2 ;
cosα = 1/ √26 ; α =arc cos 1/ √26