∠АВН = 30°; ∠ВАР = 45°.
Пошаговое объяснение:
Концы отрезка, длина которого 16 см, принадлежат двум взаимно перпендикулярным плоскостям. Расстояние от концов отрезка до линии пересечения плоскостей равны 8 см и 8√2 см. найти углы, которые образует отрезок со своими проекциями на данные плоскости.
Решение.
Даны две взаимно перпендикулярные плоскости α и β.
Пусть отрезок АВ = 16 см. Расстояние от точки А, принадлежащей плоскости α, до линии пересечения плоскостей - это перпендикуляр АН, а расстояние от точки В, принадлежащей плоскости β, до линии пересечения плоскостей - это перпендикуляр ВР. Соответственно, ВН - проекция отрезка АВ на плоскость β, а АР - проекция отрезка АВ на плоскость α.
Следовательно, надо найти углы АВН и ВАР.
Отметим, что АН⊥НВ, а ВР⊥АР, так как АН⊥β, а ВР⊥α соответственно по построению.
В прямоугольном треугольнике АВН:
Sin(∠АВН) = АН/АВ =8/16 = 1/2. => ∠АВН = 30°
В прямоугольном треугольнике АРВ:
Sin(∠ВАР) = ВР/АВ =8√2/16 = √2/2. => ∠ВАР = 45°.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь боковой поверхности тела, полученного при вращении прямоугольного треугольника с катетами 4 см и 7 см, вокруг большего катета. (ещё распишите дано, найти)
а как вам такое решениеце? высота к гипотенузе делит прямоугольный треугольник на два, ему же подобных (и подобных между собой, конечно) поскольку в этих треугольниках оба катета исходного треугольника играют роль гипотенузы, площади этих треугольников отностятся как квадраты катетов (в данном случае - соответственных сторон)
s1/s2 = (6/8)^2 = 9/16;
в сумме s1 + s2 = 8*6/2 = 24;
остюда легко найти s1, s2 и их разность : )
вот один из способов : ) пусть s1 = 9x; s2 = 16x, где х - неизвестная величина.
тогда s1 + s2 = 25x = 24; x = 24/25;
s2 - s1 = (16 - 9)*x = 7*24/25 = 6,72;