1. Апофема L определяется по т Пифагора L²=h²+(a/2)²=100+4=104, L = = 2 ≈ 10,2 см
Объяснение:
2. Площадь основания находится как площадь равностороннего Δ с со стороной a, So = a²/4=4. Аопофема L находится из условия L²=b²-(a/2)²=64-2,25=61,75, L ≈ 7,59 cм, тогда площадь 1 Грани = aL/2 ≈ 1,5·7,59≈11,78 cм², а вся площадь боковой поверхности = утроенной площади боковой грани ≈ 33,36 см². Общая площадь = 4√3+33,36 ≈33,36+6,93 ≈ 40,29 ≈ 40 см²
3. Диагональ основания d =6, тогда высота находится из соотношения h² = b²-(d/2)²=144-18=126, h =3, площадь основания So=a²=36, объём V=Soh/3=36≈ 95,25 ≈ 95 см²
ответ: S = 90
Объяснение:
Сделаем дополнительные построения (на рисунке).
Из треугольника EFD найдем высоту DF.
DF²= ED²-EF² = 117 - 81 = 36 и отсюда DF = 6
В новом параллелограмме BEDF диагонали пересекаются и делятся пополам, значит ОЕ = OF = EF/2 = 4,5
Из треугольника ОFD по Пифагору найдем OD
OD² = OF² + FD² = 4,5²+6² = 56,25 и тогда OD = 7,5
Но диагонали прямоугольника равны и в точке пересечения делятся пополам, то есть АС=BD = 7,2*2 = 15
Теперь найдем синус угла между диагоналями <FOD из того же треугольника OFD
sin(FOD) = ED/OD = 6/7.5 =
S = 0,5*AC*BD*sin(FOD) = 0,5*15*15*4/5 = 90
Поделитесь своими знаниями, ответьте на вопрос:
Вравностороннем треугольнике abc высота ch равна 39√3. найдите стороны этого треугольника