ΔАВС , АВ=ВС , ∠АСВ=75° , точка Х∈ВС , т. Y∈ВС , т. Х∈ВY ,
АХ=ВХ=2 см , ∠ВАХ=∠YАХ . Найти AY .
Так как ΔАВС - равнобедренный и АВ=ВС, то ∠ВАС=∠АСВ=75° ⇒
∠АВС=180°°-75°-75=30°
Так как АХ=ВХ=2 см , то ΔАВХ - равнобедренный и ∠ВАХ=∠АВХ , но ∠АВХ=∠АВС=30° , поэтому ∠ВАХ=30° и ∠АХВ=180°-30°-30°=120° .
Тогда внешний угол ∠AXY=180°-120°=60° .
По условию ∠YAX=∠ВАХ=30° . Тогда в ΔAXY угол ∠AYX=180°-30°-60°=90° , то есть ΔAXY - прямоугольный , в котором гипотенуза АХ=2 см , а катет XY , лежащий против угла в 30°, равен половине гипотенузы, то есть XY=1 cм .
По теореме Пифагора AY²+XY²=AX² ⇒ AY²=AX²-XY²=2²-1²=4-1=3 ,
AY=√3 cм .
Объяснение:
Отметь как лучший
(см. объяснение)
Объяснение:
Сразу замечу, что задача составлена неграмотно. Высота измеряется в сантиметрах, а не сантиметрах квадратных, поэтому правильного ответа здесь заведомо нет! Если пренебречь этой существенной неточностью, видим, что в последнем варианте не сокращена дробь, хотя .
Комментарий:
Задачу можно было решить, не зная формулы Герона (хотя она есть в школьной программе).
Покажем, что достаточно уметь применять теорему Пифагора:
Решая систему, получаем, что .
Однако такой подход, как мне кажется, менее оптимален.
Задание выполнено!
Поделитесь своими знаниями, ответьте на вопрос:
Одна сторона прямоугольника больше стороны квадрата на 12 см, а другая равна ей. площадь прямоугольника на 72 см2 больше площади квадрата. найдите стороны прямоугольника.